Earth Story.

Here by accident? Not on your nelly!

An Essay Originally Published in Salvo Magazine Volume 51

 

For this is what the Lord says—

he who created the heavens,

 he is God; he who fashioned and made the earth,

 he founded it; he did not create it to be empty,

 but formed it to be inhabited— he says:

“I am the Lord, and there is no other.

                                                                                                               Isaiah 45:18

Just a few short decades ago, the Earth was considered to be an ordinary planet, orbiting an ordinary star, lost in a vast galaxy of other stars, amid myriad other galaxies populating the Cosmos. Mindless processes produced the first living organisms, we were told, which slowly evolved over the eons to produce creatures like us1. This secular myth was accepted hook line and sinker by the uneducated masses after its promotion by God-denying ‘high priests’, including the late Arthur C. Clarke, Carl Sagan and Richard Dawkins, and mindlessly parroted by a generation of science journalists unwilling to dig any deeper. Yet, with the exponential rise of human knowledge, this worldview is being radically over-turned by an avalanche of new science which paints an entirely different picture of our world: one in which its exceptional properties for supporting a long-lived biosphere for the express benefit of humanity in particular, is coming to the fore; where life itself ‘terraformed’ the Earth under Divine instruction.

An Anomalous Solar System

Many lines of evidence show that the Earth is old; 4.543 billion years with an uncertainty of just one per cent. But the circumstances under which our planetary system was shaped were very unusual. Formed from the gravitational collapse of a vast cloud of gas and dust, the proto-solar system condensed into a relatively thin disk with the neonatal Sun at its center. The inventory of elements endowed to the solar system might have turned out to be much like any other were it not for the presence of at least two relatively close-by supernova events2 which helped eject it from a nursery of other stars, but which also enriched the primordial solar system with relatively large quantities of heat-generating radioactive elements such as aluminum 26, thorium and uranium3. The aluminum 26, with its short half-life of 730,000 years, provided enough thermal energy to remove excess levels of volatiles including water, carbon monoxide and carbon dioxide which would have scuppered the future emergence of living creatures on our world. In contrast, the very dense and long-lived radioactive elements like uranium and thorium sank to the center of the primordial earth, where their prodigious heat has kept the planet in a geologically active state over billions of years.

The Moon-forming event, which is thought to have occurred about 100 million years after the neonatal Earth formed4, in a highly improbable, oblique collision with a Mars-sized object, helped remove still more volatiles from the primordial Earth, allowing it to eventually form relatively shallow oceans where the continental land-masses could eventually emerge from the sea floor.  The debris from this cataclysmic event formed a relatively large Moon in close proximity to the Earth, helping to stabilize its orbital inclination and over time, to slow down the rotation rate of our planet from just 5 hours shortly after the Moon’s formation, to its present leisurely rotation period of 24 hours.

For the first few hundred million years after its formation, the Earth would have looked black and golden from the vantage of outer space, from the vast amounts of solidified magna cooling on its surface as well as the prodigious levels of volcanic activity spewing out hot lava from the planet’s interior. Frequent collision events with smaller space debris like asteroids would also have exacerbated these hellish conditions, but eventually the prodigious levels of water vapor outgassed from its interior would have transformed our lava dominated planet into a blue water world still devoid of continental landmasses.4  But just as soon as the Earth cooled down enough to enable liquid water to flow on its surface, life appeared.

Life Terraforms the Planet

The standard evolutionary story is that life began as simple organisms and gradually progressed to more complex forms with the slow march of time, but the best scientific evidence now suggests that this life was already complex and biochemically sophisticated. This is based on isotopic evidence5,6 from the analysis of ratios of carbon and sulfur isotopes in sedimentary rocks laid down over 3.5 billion years ago. Since these biochemical processes have an absolute requirement for highly complex protein enzymes to have been present, it completely eludes an evolutionary explanation. Then why did our Creator choose to begin Earth’s life story with microbes? The answer has less to do with evolution than it has with chemical sophistication. The simple answer is that microbes are, by some considerable margin, the hardiest creatures ever to have lived on our planet.

Microbes are the die-hards of the living world, being capable of surviving in very hot and cold temperatures, high and low pH environments, and can even thrive in a cocktail of toxic chemicals and radioactive environments. Once the planet cooled enough to allow the first microbes to survive, they were set to work removing a plethora of poisonous substances from the primordial Earth. In these early times, the Earth’s surface would have had large amounts of so-called vital poisons, substances that are required in small amounts for more complex life to thrive, but in higher concentrations, can prove lethal; substances like iron, copper, zinc, molybdenum, arsenic, boron, selenium and iodine, to name but a few. In their soluble forms such vital poisons would have stunted any new life forms coming on the scene but in chemically transforming these elements7 into insoluble ores and minerals, microbes not only  removed such vital poisons from the Earth’s water environments but also formed large deposits of the valuable minerals that are now mined for their use in high technology devices. This also makes sense from a creation point of view, as more complex organisms are far more sensitive to these toxins than microbes are. One other benefit that life brought to the Earth is that it greatly enriched the planet’s mineral and gemstone tally. According to Dr. Robert Hazen, a world-leading mineralogist, Earth has the greatest diversity of mineral species of any body in the Solar System.4 Over 4,600 mineral species have been identified on Earth. In contrast, Mars probably has about 500 and Venus about 1,000 at the most. What’s more, Hazen discovered that life processes formed about two-thirds of Earth’s mineral species4.

Recent oxygen isotope evidence shows that ongoing plate tectonic activity produced nearly all the continental landmasses by about 2.5 billion years ago.8 The fact that just 29 per cent of the planet’s surface area is covered by dry land appears to be highly fine-tuned. Greater land surface areas would induce too little precipitation in the interior of those ancient continents, preventing life from gaining a hold in these places. On the other hand, land areas significantly less than 29 per cent would not be able to re-cycle enough valuable nutrients between the land, the sea and the atmosphere to maintain a healthy biosphere.

The earliest lifeforms extracted energy from these minerals without the need for molecular oxygen, but the introduction of photosynthetic microbes radically transformed the early biosphere, paving the way for the introduction of advanced lifeforms. One way to get a handle on how early oxygenic photosynthesis occurred on Earth is to study so-called Banded Iron Formations (BIFs)comprised of iron rich clays containing magnetite and hematite. The early oceans had high concentrations of soluble iron, but when it reacts with oxygen, it forms an insoluble rust-like substance that serves as iron ore today. Such studies reveal that BIFs were first laid down about 3.0 billion years ago, continuing up to about 1.8 billion years ago.9 This coincides with the microfossil record of life, which shows that oxygen-dependent complex cellular life (the so-called Eukaryotes) made its first appearance around 2 billion years ago.10The rise in atmospheric oxygen also created the ozone layer, which protected future life on land from the damaging effects of ultraviolet radiation from the Sun.

The emergence of oxygen-generating photosynthesis had other effects that are not immediately obvious. When the Sun was born, it was about 30 per cent less luminous than it is today, but as it aged, its luminosity increased with the result that the amount of thermal energy received by the planet also increased. Photosynthetic organisms removed great amounts of greenhouse gases from the atmosphere by absorbing carbon dioxide and generating oxygen which reacted rapidly with another greenhouse gas, methane. In so doing, photosynthetic organisms served to counteract the tendency of the aging Sun to overheat the planet.11 The remains of these and other unicellular creatures settled to the bottom of the oceans where they  formed vast sediments that were compressed over time to produce natural gas and oil reserves so important to human civilization today.

After a long cooling phase coinciding with the formation of the supercontinent, Rhodinia4, signs of the first large(macroscopic) multicellular lifeforms appeared about 600 million years ago in an event known to palaeontologists as the Avalon Explosion, where scientists have uncovered the first evidence of simple animal lifeforms. It is unclear however whether these bizarre creatures were animals or plants but what is clear is that in the space of a short 10-million- year period starting around 541 million years ago, 80 per cent of all existing animal forms appeared in the fossil record, with no credible evolutionary antecedents. Paleontologists studying the so-called Cambrian Explosion have found no transitional forms in layers immediately pre-dating this period in Earth history. Moreover, the land was being prepared for the arrival of vascular plants by fungi who began breaking down rocks into soil as early as about 1000 million years ago12.  It is difficult to conceive how any blind process like Darwinian evolution could produce such stunning biological complexity and diversity in such a short space of time without any foresight.

In recent times, a greater appreciation of the interplay between life and plate tectonics has been appreciated. Without plate tectonics, our planet wouldn’t have a climate stable enough to support life over billions of years of time. That’s because plate tectonics takes center stage as a planetary thermostat in a process called the “carbonate-silicate” cycle.13 Carbon dioxide in the atmosphere dissolves in rainwater to form carbonic acid, which dissolves silicate rocks. The by-products of this erosion, or “weathering,” are conveyed to the oceans where they are ingested by organisms—such as tiny planktonic foraminifera—and incorporated into limestone (calcium carbonate) shells. When those creatures die, they fall to the bottom of the ocean and pile up as sediments, creating new raw materials used by humanity. The introduction of life on planet Earth also increases the amount of water subducted into the mantle, where it functions as a kind of lubricant, facilitating motions between plates. It also lowers the melting point in the mantle, which leads to more volcanism and therefore more continent building. So, without life speeding up the weathering at the surface as well as the sedimentation rate on the sea floor, the fraction of the surface covered by continents would be far smaller.

Plate tectonics has other, hitherto unforeseen consequences for the maintenance of the Earth’s strong magnetic field.  By accelerating the transfer of heat to the surface, plate tectonics induces convection in the liquid iron outer core of our planet. What’s more, it’s the dynamic outer core that generates our planet’s magnetic field, which protects Earth’s atmosphere and oceans from excessive erosion and dessication from the solar wind as well as all surface life from dangerous cosmic rays.

The fossil record attests to several mass extinction events that occurred over the long history of our planet.14 Research has shown that these devastating events are followed by equally spectacular mass speciation events, uncannily similar to the scenarios described in Psalm 104. According to Christian astronomer, Dr. Hugh Ross, these events proved crucial for maximizing both the quantity and longevity of Earth’s life.15 By ensuring that the right quantities and kinds of life are present at the right times, our Creator employed these organisms to remove the just-right quantities of greenhouse gases from Earth’s atmosphere so as to compensate for the Sun’s increasing brightness. According to Ross, one would expect God to intervene periodically to remove life no longer appropriate for compensating for a brightening Sun and then replace it with life that is more efficient at doing so. Finally, in the last few hundred million years, vast deposits of coal and oil were produced from the remains of plant life that flourished on land during the Carboniferous and Permian (360 to 250 million years ago) periods, which was necessary for the launch of the industrial revolution.

Jewel Planet

Seen in the light of these new scientific discoveries, it is apparent that the Earth is a highly fine-tuned planet that has sustained a very stable environment over 4 billion years for the flourishing of life. And that same life transformed our world beyond recognition to make it ideal for humans to thrive in. This consensus is now being expressed by other scientists, who have noted Earth’s amazing properties. Influential books like Donald Brownlee and Peter Ward’s Rare Earth16: why complex life is are in the Universe, David Waltham’s Lucky Planet17, John Gribbin’s Alone in the Universe18 as well as Privileged Planet19by Guillermo Gonzalez and Jay Richards, all seem to be singing from the same hymn sheet. Far from being a humdrum planet orbiting an ordinary star, the Earth was designed by a mind vastly more advanced than our own. And I give God all the glory!

 

Dr. Neil English is the author of several books in amateur & professional astronomy. His latest historical work, Chronicling the Golden Age of Astronomy, is published by Springer-Nature. You can support his ongoing work by making a small personal donation or by purchasing one of his books. Thanks for reading!

 

References

  1. Sagan, C. Cosmos, MacDonald Futura Publishers, London, 1981.
  2. Eric Gaidos et al., “26Al and the Formation of the Solar System from a Molecular Cloud Contaminated by Wolf-Rayet Winds,” Astrophysical Journal 696 (May 10, 2009): 1854–63.
  3. Ross, H., Elemental Evidence of Earth’s Divine Design; https://reasons.org/explore/publications/nrtb-e-zine/read/nrtb-e-zine/2010/03/01/elemental-evidence-of-earth-s-divine-design
  4. Hazen, R. The Story of Earth, Penguin, 2012.
  5. Allen P. Nutman et al., “≥3700 Ma Pre-Metamorphic Dolomite Formed by Microbial Mediation in the Isua Supracrustal Belt (W. Greenland): Simple Evidence for Early Life?” Precambrian Research 183, no. 4 (December 15, 2010): 725–37.
  6. Yanan Shen et al, “Isotopic Evidence for Microbial Sulphate Reduction in the Early Archaean Era,” Nature 410 (March 1, 2001): 77–81.
  7. Gadd, G.M., Metals, minerals and microbes: geomicrobiology and bioremediation https://mic.microbiologyresearch.org/content/journal/micro/10.1099/mic.0.037143-0;jsessionid=CfnAVoIxE-Nxln81QM-D2S0N.x-sgm-live-02
  8. N. Bindeman et al., “Rapid Emergence of Subaerial Landmasses and Onset of Modern Hydrologic Cycle 2.5 Billion Years Ago,” Nature 557 (May 23, 2018): 545–48, https://doi:10.1038/s41586-018-0131-1.
  9. James, H.L. (1983). Distribution of banded iron-formation in space and time. Developments in Precambrian Geology, 6, 471–490.
  10. Simonetta Gribaldo et al., “The Origin of Eukaryotes and Their Relationship with the Archaea: Are We at a Phylogenomic Impasse?” Nature Reviews Microbiology 8 (2010): 743–52.
  11. Ross, H. Improbable Planet, Baker Books, 2016.
  12. https://theconversation.com/complex-life-may-only-exist-because-of-millions-of-years-of-groundwork-by-ancient-fungi-117526
  13. Walker, J.C.G., Hays, P.B., & Kasting, J.F. A negative feedback mechanism for the long-term stabilization of Earth’s surface temperature. Journal of Geophysical Research 86, 9776-9782 (1981).
  14. Melott & Bambach, “Do Periodicities in Extinction—With Possible Astronomical Connections—Survive a Revision of the Geological Timescale?” Astrophysical Journal 773 (August 10, 2013).
  15. Ross, H. Mass Extinction Periodicity Design; https://www.reasons.org/explore/publications/nrtb-e-zine/read/nrtb-e-zine/2013/12/01/mass-extinction-periodicity-design
  16. Brownlee, D. & Ward, P., Rare Earth, Why Complex Life is Uncommon in the Universe, Springer, 2000
  17. Waltham, D., Lucky Planet, Icon Books, 2015
  18. J., Alone in the Universe; Why our Planet is Unique, John Wiley, 2011.
  19. Gonzalez, G. & Richards, J, The Privileged Planet: How Our Place in the Cosmos Is Designed for Discovery, Regnery Publishing, 2004.

                                                                                                                       

De Fideli.

Battle o’ the Specula: the Martian Opposition of 2020!

Octavius(laevo) et Duodecim.

A work begun September 18 2020.

As I have explained in previous blogs, I am a Newtonian convert, after spending more than a decade promoting small aperture and way over priced refractors. It was in January 2015 that I finally set out on a journey of transformation that gradually convinced me that for serious amateur astronomy, where high resolution targets were concerned, Newtonian reflectors offered much greater bang for buck. Indeed, a humble SkyWatcher 8″ f/6 Dobsonian costing less than £300 completely out-performed state of the art refractors costing £1500 and upwards I had used in the 5 and 6-inch aperture range. After I had convinced myself of the truth of this revelation, I began to communicate my ideas in a series of observation reports, much to the chagrin of the “refractor nuts” who I believed(and still believe) had deluded themselves for years and decades. Furthermore, I stated that one of the principal reasons for the popularity of refractors in the amateur community pertained to their lack of maintenance, as well as their rapid acclimation owing to their small apertures. Furthermore, I attributed the decline of the Newtonian reflector, at least in part, to an unwillingness of amateurs to learn how to properly collimate and acclimate their telescopes. Blinded by the instant gratification of small, unobstructed apertures, they foolishly forsake the feral but oh so sweet charms of a well-tuned Newtonian. Had they learned how to adequately set up their Newts, they would not have joined the rat race, as I once did, to buy ever larger and unwieldy instruments that unnecessarily drain amateurs of resources. To my mind, as an observer who chooses horses for courses, refractors are beginner telescopes that really lack the aperture needed to see the creation in all its detail…. warts an’ all.

Over a period of time, I embarked on a number of projects that first improved the performance of the 8-inch(Octavius) and my smaller ‘grab ‘n’ go’ instrument; a 5.1 inch(a.k.a. Plotina) f/5 reflector, which included buying in higher quality optical flats and treating the mirrors to the highest quality coatings money could buy(but still very economical in the scheme of things) as well as learning the art of precise collimation and acclimation. I also studied the problem of tube currents and how insulating the tubes greatly reduced these problems. These telescopes gave me a great deal of pleasure in pursuing the entire panoply of astronomical targets, and in my specialist area of double star observing, their fine, sharp and colour-pure images were nothing short of revelatory! And once I began exploring the long and rich history of the Newtonian reflector in the hands of highly skilled observers, I discovered that my sentiments toward these wonderful telescopes were shared by many of them. You can explore a lot of these stories in my large historical work, Chronicling the Golden Age of Astronomy. Failing that, take a long, hard look at the hundreds (thousands?) of testimonies about Newtonian reflectors in this ongoing blog.

In the summer of 2017, I added an even larger Newtonian telescope to my arsenal, a Revelation-branded 12″ f/5 Newtonian reflector (Duodecim). The instrument was outfitted with a GSO primary and secondary mirror. My star testing of the instrument showed that the optics were very good indeed, especially when one considers the very modest price I paid for it second hand( ~£400 as I recall) and I enjoyed many evenings of double star and deep sky observing with it. I did not elect to upgrade the 70mm secondary of this telescope unlike my smaller instruments, but only to treat both mirrors to the same state-of-the art coatings I had also applied to my other reflectors.

Despite owning this large 12 inch instrument for over three years now, I have never subjected it to serious testing on planets. This was not due to any lack of enthusiasm on my part, but simply reflected the fact that visually interesting worlds like Jupiter, Saturn and Mars were not favourably placed at my observing location to warrant any serious study of them. They were simply too low in my local skies and obstructed by trees to give the telescope a fair chance of showing off its powers. But all that changed in the autumn of 2020, when the planet Mars presented itself as a bright, morning object, rising to very decent altitudes in my sky to finally enable me to assess its performance in this regard.

So, in this blog, I wish to offer my opinions on how well it performs on the Red Planet in comparison to my smaller, but optically excellent, 8-inch reflector. The results were a long time in coming, that’s for sure, but I now have reached a very clear and unambiguous conclusion. To find out the details, read on.

Octavius (left) and Duodecim(right) looking southeast-ward at Mars.

Beginning my observations at the end of the first week in September, by God’s grace I was treated to a long spell of settled weather, which still persists to this day (September 18). I usually began my observations starting at around 23:45 UT and ended them about an hour later at 00:45 UT(add an hour for BST) by which time the planet had attained a very decent height above my south-eastern horizon but still someway from its highest altitude when it culminates in the south.

Both instruments are mounted on simple, non-motorised, lazy-Suzan Dob mounts and were fully acclimated and precisely collimated prior to making any planetary observation. The reader will also note that I do not employ any active cooling(electric fans) on either instrument, in keeping with my desire to preserve my style of observing, which is ostensibly low-tech, and in keeping with the methods employed by my astronomical forebears.

Optimal Magnifications Employed

I employed a good but very simple Orion 10mm Sirius Plossl eyepiece coupled to Barlow lenses on both instruments. The Plossl is a superb planetary ocular, owing to its technological refinement over more than a century, its small number of glass elements, and though eye relief is tight, it is considerably improved by adding a Barlow lens, which makes the viewing more comfortable and immersive!. In my testing, conducted over several nights, I gravitated toward an optimal power of 192x for the 8″ f/6 instrument and 244x on the 12″ f/5 instrument. These powers were obtained by coupling the 10mm Plossl to a 1.6x Barlow in both instruments. The reader will note however that by employing a 2x Barlow with the same eyepiece, I was also able to get very satisfactory results with the higher powers it delivered(240x and 310x for the 8- and 12-inch, respectively). A common mistake made by novice observers is to try to coax very high powers on planets to obtain a greater disk enlargement but I have found by experimentation that finer details are often gleaned by backing down the power a bit so that image sharpness is optimised over apparent disk size.

As well as observing the planets as presented by the Plossl and Barlow combination, I also studied the contrast enhancing effects of several colour filters, which included simple, inexpensive Wrattens, but also a number of interference-based filters marketed by Baader Planetarium and Tele Vue. In the next section, I will outline the results I obtained.

Results: The telescopes were set up next to each other and experienced nights of good seeing (Antoniadi II or less) as well as average seeing( Ant III) during  the wee hours of the morning. The image in the 8-inch was very bright, but the 12-inch presented intensely bright images with its attendant  diffraction spikes. That said, after a few minutes, one’s eye adjusts and more details pop out of the image. Both telescopes showed impressive levels of detail; a small south polar ice cap, a more extensive northern ice cap, very distinctly resolved darker areas and limb mist. At a glance, the 12-inch reflector showed more detail regardless of whether the conditions were above average or just average. A feature merely hinted at in the 8-inch was unambiguously discerned in the larger, 12-inch instrument. The 8 inch reflector showed less atmospheric turbulence than the 12-inch but the increase in turbulence was less than I had anticipated. I concluded that the 12-inch could be used productively as a powerful planetary telescope, which came as a great relief to me.

A variety of filters were employed to assess their contrast enhancing effects. An orange Wratten #21 proved especially good for bringing out surface details and proved equally good on both instruments. A Baader green long pass filter also proved very effective, especially in the 12-inch, showing up surface details complementary to green. The Tele Vue Bandmate Planetary filter was also excellent in both telescopes. For enhancing atmospheric phenomena, a blue Wratten # 38 A really enhanced morning limb mist. For a minimalist effect though, I tried the Baader single polarising filter, which did an excellent job increasing contrast and reducing telescopic glare without imparting any colour shift. I intend to use the single polariser in routine work on this planet as it approaches its mid-October opposition and beyond.

To get an idea of the kind of detail I could discern through the 12-inch, have a look at some sketches shown here and here, made by experienced UK-based observers employing 12-inch reflecting telescopes during the current Martian apparition.

Conclusions: Some UK-based observers in the modern era have claimed that a 12-inch is too large to use productively as a planetary instrument but I must respectfully disagree with that conclusion. Under the conditions in which I routinely observe the 12-inch proved the superior instrument. So aperture wins, though the 8-inch reflector is much easier to use because it has very smooth motions in both azimuth and altitude axes. My 12-inch Dob base moves far less smoothly but the results convinced me that I should improve its azimuth bearings or acquire a better quality base for the telescope. Such a modification will go some way to increasing both the efficacy and enjoyability of this large instrument. Suffice it to say that I am very much looking forward to observing Jupiter and Saturn at higher altitudes with my 12-inch over the coming years, God willing.

 

 

Neil English is the author of several books in amateur and professional astronomy. He is currently writing a book on how to improve the performance of budget Newtonian reflectors of various sizes, which is due out in 2021. Thanks for reading.

 

 

De Fideli.

Paradigm Shifts.

The Story of the Solar System: The Primordial Earth - skyatnightmagazine

Originally Published in Salvo Magazine Volume 50

“Life should not exist. This much we know from chemistry. In contrast to the ubiquity of life on Earth, the lifelessness of other planets makes far better chemical sense.” So writes Professor James Tour, one of the world’s foremost synthetic organic chemists, based at Rice University in Texas. Intimately acquainted with the latest research in prebiotic chemistry, Tour has expressed severe skepticism that a plausible naturalistic mechanism for the origin of life will be found any time soon. But he goes even further:

 

“We synthetic chemists should state the obvious. The appearance of life on Earth is a mystery. We are nowhere near solving this problem. The proposals offered thus far to explain life’s origin make no scientific sense. Beyond our planet, all the others that have been probed are lifeless, a result in accord with our chemical expectations. The laws of physics and chemistry’s Periodic Table are universal, suggesting that life based upon amino acids, nucleotides, saccharides and lipids is an anomaly. Life should not exist anywhere in our Universe. Life should not even exist on the surface of the Earth.”1

Dr. Tour’s views have surfaced at a time when astronomers have been peering into the depths of space, searching for intelligent signals from hypothetical alien civilizations. Yet although they have been listening for more than half a century, ET has not chimed in. The quest to detect life beyond the Earth is admittedly in its infancy, but the negative results thus far produced have caused more than a few scientists to question the underlying assumptions made by the early pioneers in the quest to find extra-terrestrial life: Frank Drake and Carl Sagan.

Despite what the general media report, there are a number of serious problems with the standard origin-of-life models, for which their proponents have failed to provide good answers. For example, life on Earth requires a source of homochiral molecules, that is, molecules that are capable of rotating the plane of polarized light either to the left (L) or to the right (D). Specifically, life invariably requires L amino acids and D sugars. But so far, chemists have been unable to identify a plausible natural mechanism by which these left- and right-handed biomolecules can be generated at the high level of purity necessary for the first cells to form. Indeed, such molecules can only be synthesised under highly constrained laboratory conditions, using purified (read bought in) reagents, which have little or no relevance to the environment of the early Earth. And while meteorites have been found that contain small amounts of amino acids, they invariably are shown to contain equal amounts of L and D isomers (technically known as a racemic mixture).

In short, no conceivable naturalistic scenario could result in the generation of the large, stable ensembles of homochiral ribose and homochiral amino acids that all naturalistic origin-of-life models require, affirming why no such natural sources have ever been found.2 I recently asked Dr. Tour directly if the problem of homochirality had been solved, and he firmly responded, “No; it is far from solved.”

 

The Phosphorus Conundrum

The element phosphorus is vital for the proper functioning of living cells, being a constituent of both RNA and DNA, as well as of adenosine triphosphate (ATP), the universal energy currency of all known life forms. But recent work conducted by Cardiff University astronomers suggests that phosphorus could be scarce in many parts of the universe. “Phosphorus is one of just six major chemical elements on which Earth organisms depend,” says Dr. Jane Greaves, and it is crucial to the compound ATP, which cells use to store and transfer energy. Astronomers have just started to pay attention to the cosmic origins of phosphorus and found quite a few surprises. In particular, phosphorus is created in supernovae—the explosions of massive stars—but the amounts seen so far don’t match our computer models. I wondered what the implications were for life on other planets if unpredictable amounts of phosphorus are spat out into space and later used in the construction of new planets.3

 

The Cardiff team used the UK’s William Herschel telescope, situated on La Palma in the Canary Islands, to measure the levels of phosphorus and iron in the Crab Nebula, a well-known supernova remnant. They compared those figures to measurements taken earlier from another supernova remnant known as Cassiopeia A (Cas A). Their preliminary results proved very surprising. While the measurements of Cas A showed relatively high levels of phosphorus, those from the Crab Nebula showed far lower levels. “The two explosions seem to differ from each other, perhaps because Cas A results from the explosion of a rare type of super-massive star,” said Dr. Phil Cigan, another member of the Cardiff team. “If phosphorus is sourced from supernovae,” added Greaves, and then travels across space in meteoritic rocks, I’m wondering if a young planet could find itself lacking in reactive phosphorus because of where it was born? That is, it started off near the wrong kind of supernova? In that case, life might really struggle to get started out of phosphorus-poor chemistry on another world otherwise similar to our own.4

 

Re-evaluating the Drake Equation

Ever since the American astronomer Frank Drake introduced his famous eponymous equation in the early 1960s, astronomers have produced widely varying estimates of the number of extant extra-terrestrial civilizations present in the Milky Way Galaxy. Until fairly recently, the estimates varied from 10,000 to a few million. Countering these estimates, some scientists have re-examined the so-called Fermi Paradox, posed by the distinguished Italian physicist Enrico Fermi in the form of a question: If the universe is so large, with innumerable habitable planets, then why have we not detected any sign of ET?

A team of scientists and philosophers based at the Institute of Humanity in Oxford University has taken a new look at the reasoning behind the Drake equation, and found that its optimistic expectations are linked to models like the Drake equation itself. The problem, as these researchers point out, is that all such models “implicitly assume certainty regarding highly uncertain parameters.” Indeed, following an analysis, they concluded that “extant scientific knowledge corresponds to uncertainties that span multiple orders of magnitude.” When these uncertainties are introduced, the outcome is strikingly different: “When the models are re-cast to represent realistic distributions of uncertainty, we find a substantial ex ante probability of there being no other intelligent life in our observable universe, and thus that there should be little surprise when we fail to detect any signs of it.” This result, they assert, “dissolves the Fermi paradox, and in doing so removes any need to invoke speculative mechanisms by which civilizations would inevitably fail to have observable effects upon the universe.”5

 

Questioning the Mediocrity Principle

Over the past few decades, astronomers have discovered thousands of exo-planets orbiting nearby stars, so that now there is little doubt that the number of planets in the observable universe likely exceeds the number of stars. Exo-planet hunters have discovered that many of these planets orbit their stars within the so-called habitable zone—that narrow annulus around a star that allows for the stable existence of water on a planet’s surface. Nevertheless, as geologist Peter Ward and astronomer Donald Brownlee argued in their highly influential book, Rare Earth; Why Complex Life Is Uncommon in the Universe,6 many of the features of planet Earth that have made it suitably equipped to allow both microbial and complex life to flourish on it over billions of years are likely very rare in the rest of the Universe.

For instance, the vast majority of potentially habitable exo-planets orbit low-mass red dwarf stars, which make up 75 percent of all the stars in the galaxy.7 These stars are much more active than sun-like stars, thus exhibiting higher rates of flaring than does the Sun. Many such stars also generate strong stellar winds that could strip away the atmospheres of their planets.8 And many planets are located so close to their parent stars that they have become tidally locked, meaning that they do not rotate on an axis but constantly present the same face to their stars as they move in their orbits. Yet another issue pertains to the potential of gravitational perturbations of a habitable planet by its neighbouring planets. Even small changes to the orbital characteristics of a planet could extirpate any developing life that might exist upon it. All these conditions raise many problems for the development of any hypothetical life forms on the surface of these planets over long periods of time.

NASA’s Hubble Space Telescope is currently being utilized in a special program called HAZMAT—Habitable Zones and M Dwarf Activity Across Time. And the early results from the program do not look encouraging. Preliminary data on just a dozen young red dwarf stars show that the frequency of flaring is much higher in them than in stars like the Sun; they typically emit flares with energies that are between 100 and 1,000 times higher than those of their elder counterparts. The most energetic red dwarf flares, dubbed Hazflares, are far more energetic than the most energetic flares ever to come from the Sun. “With the Sun, we have a hundred years of good observations,” says Parke Loyd, a member of the scientific team involved in the project.

And in that time, we’ve seen one, maybe two, flares that have an energy approaching that of the Hazflare. In a little less than a day’s worth of Hubble observations of these young stars, we caught the Hazflare, which means that we’re looking at superflares happening every day or even a few times a day.9

So-called super-earths—worlds larger than the Earth but smaller than Neptune—have recently been identified as possible candidate worlds for the development of life, but there is as yet no scientific consensus on whether they can maintain or even allow plate tectonic activity to occur in their crusts. Without plate tectonics, there will be far less efficient nutrient re-cycling, which would greatly hinder the flourishing of hypothetical life forms.

In March 2019, a team of astronomers based at the Australian National University dealt yet another blow to the prospects of finding viable exo-planetary biosystems. Modelling the magnetic fields of a large number of exo-planets, the astronomers concluded that planets with a strong magnetic field, like Earth, are likely to be very rare. “Magnetic fields appear to play an essential role in making planets habitable, so I wanted to find out how Earth’s magnetic field compared to those of other potentially habitable planets,” says Sarah Macintyre, the lead author of the paper.10 “We find most detected exo-planets have very weak magnetic fields, so this is an important factor when searching for potentially habitable planets,” she added.

Life on Mars or Venus?

Scarcely a year goes by without the question arising of whether or not Mars has microbial life. This issue was brought into sharp focus in June 2018, when NASA scientists announced the discovery by the rover Curiosity of organic matter in the soil of an ancient lakebed.11 But “organic matter” means different things to different people. Simply put, matter that is carbon-rich is not necessarily derived from biogenic sources.

More broadly though, if evidence of either extant or past life on Mars is uncovered, it might well also be discovered that such life originated on Earth. Indeed, it is estimated that over the 4-billion-year history of life on Earth, so much terrestrial soil has found its way to Mars that the Red Planet can boast an average of 2 kilograms of terrestrial soil per square kilometre of its surface (or about 11.3 pounds per square mile).12 It is certainly possible that some microbial life was delivered there along with the soil—in fact, the discovery of either extant microbial life or microfossils on Mars or the recent claim of life in the clouds of Venus might well be anticipated. If that happens, astrobiologists will need to consider the possibility that it came from Earth before claiming that any such life originated on these worlds. The popular media, pushing sensationalism, would never be so cautious.

Questioning Biosignatures on Exo-planets

Oxygenic photosynthesis by plants is the mechanism that produces the vast majority of the molecular oxygen in the terrestrial atmosphere. So for several decades, astrobiologists have speculated that the detection of oxygen in the atmosphere of an exo-planet would provide good evidence that life must exist there.13 While the detection of substantial levels of this gas would certainly be suggestive of the presence of plant life as we know it, it pays to remember that there are established abiotic mechanisms (mechanisms derived from non-living sources) that also can generate substantial molecular oxygen.

A group headed by Chinese astronomer Feng Tian of Tsinghua University published two interesting papers in 2009 that show that stars having less than 50 percent of the mass of the Sun (i.e., the majority of stars) emit copious quantities of hard UV rays and soft X rays throughout their long nuclear burning phases of up to 10 billion years.14 They also showed that when a lifeless exo-planet possessing carbon dioxide in its atmosphere is irradiated, the rays can break down the CO2 into carbon atoms and molecular oxygen. Over time, the carbon atoms, being less massive, escape into space, leaving the molecular oxygen behind. Tian’s calculations show that this molecular oxygen can reach concentrations of a few percent and so might be confused with a genuine biosignature.

 When a team of chemists from Johns Hopkins University simulated the atmospheres of exo-planets beyond the solar system, they found that they could create simple organic molecules and oxygen under various scenarios without the mediation of life.15 “Our experiments produced oxygen and organic molecules that could serve as the building blocks of life in the lab, proving that the presence of both doesn’t definitively indicate life,” says Chao He, assistant research scientist in the Johns Hopkins Department of Earth and Planetary Sciences. “Researchers need to more carefully consider how these molecules are produced.” Up-and-coming missions, such as the highly anticipated ones utilizing the James Webb Space Telescope, would need to take results like these into account before jumping to any firm conclusions about the habitability of a candidate planet. As a case in point, the recent flap in the media about the detection of phosphine on Venus, upon further analysis, showed that the biomarker in question was not,  in fact, present in statistically significant levels.

In a recent development, a team of planetary scientists led by Li Zeng at Harvard University estimated that as many as 35 percent of exo-planets may have impenetrable water oceans hundreds of kilometres deep.16 But while NASA has long adopted the mantra, “follow the water,” the same scientists caution that these planets are very unlikely to be habitable. Their fathomless ocean worlds would generate pressures millions of times greater than those found on Earth, resulting in exotic, rock-like ice formations many kilometres deep (such as ice VII) covering their floors. Such conditions would prevent any nutrient recycling from occurring, thus rendering these planets sterile.

Call for Caution

Investigating whether extra-terrestrial life exists or not is a profoundly important and interesting scientific endeavor, but at this point, there are good grounds for remaining skeptical about whether it actually exists. Given the arguments raised in this article, it is entirely reasonable to think that life might be extraordinarily rare in the universe, perhaps even unique to Earth. Only time will tell.

 

Notes

  1. James Tour, An Open Letter to My Colleagues (August 2017): http://inference-review.com/article/an-open-letter-to-my-colleagues.
  2. Hugh Ross and Fazale Rana, Origins of Life (RTB Press, 2014).
  3. “Paucity of phosphorus hints at precarious path for extraterrestrial life” (Apr. 4, 2018): eurekalert.org/pub_releases/2018-04/ras-pop040318.php.
  4. Ibid.
  5. Anders Sandberg et al., “Dissolving the Fermi Paradox” (June 8, 2018):

https://arxiv.org/pdf/1806.02404.pdf.

  1. Peter D. Ward and Donald Brownlee, Rare Earth; Why Complex Life Is Uncommon in the Universe (Copernicus Books, 2000).
  2. “Superflares from young red dwarf stars imperil planets,” NASA News (Oct. 22, 2018):

https://exoplanets.nasa.gov/news/1527/superflares-from-young-red-dwarf-stars-imperil-planets.

  1. O. Cohen et al., “Magnetospheric Structure and Atmospheric Joule Heating of Habitable Planets Orbiting M-Dwarf Stars,” Astrophysical Journal 790 (July 2014): doi:10.1088/0004-637X/790/1/57.
  2. Ibid., note 7.
  3. “Strong planetary magnetic fields like Earth’s may protect oceans from stellar storms,” Royal Astronomical Society (Mar. 14, 2019): https://m.phys.org/news/2019-03-strong-planetary-magnetic-fields-earth.html.
  4. Jennifer L. Eigenbrode et al., “Organic Matter Preserved in 3-Billion-Year-Old Mudstones at Gale Crater, Mars,” Science 360 (June 8, 2018): https://doi:10.1126/science.aas9185.
  5. Ibid., note 2.
  6. Carl Sagan et al., “A Search for Life on Earth from the Galileo Spacecraft,” Nature 365 (Oct. 21, 1993): nature.com/articles/365715a0.
  7. Feng Tian, “Thermal Escape from Super Earth Atmospheres in the Habitable Zones of M Stars,” Astrophysical Journal 703 (Sept. 2, 2009): https://dspace.mit.edu/bitstream/handle/1721.1/96200/Tian-2009-THERMAL%20ESCAPE%20FROM.pdf;sequence=1; Feng Tian et al., “Thermal Escape of Carbon from the Early Martian Atmosphere,” Geophysical Research Letters 26 (Jan. 31, 2009): https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2008GL036513.
  8. Chao He et al., “Gas Phase Chemistry of Cool Exoplanet Atmospheres: Insight from Laboratory Simulations,” ACS Earth Space Chemistry (Nov. 26, 2018): https://pubs.acs.org/doi/10.1021/acsearthspacechem.8b00133.
  9. Li Zeng et al., “Growth model interpretation of planet size distribution,” PNAS (Apr. 29, 12019): pnas.org/content/early/2019/04/23/1812905116.

 

 

Neil English has been following developments in pre-biotic chemistry and astrobiology for the last 25 years. He holds a Ph.D. in biochemistry and a BSc(Hons) in physics & astronomy. His latest book, Chronicling the Golden Age of Astronomy (Springer, 2018), explores four centuries of visual astronomy. The article first appeared in Salvo Magazine Summer 2019. You can support his ongoing work by making a small donation to his website. Thanks for reading!

 

 

De Fideli.

Journey to the Northwest Highlands.

Sunset July 18, Achnasheen, Poolew, Ross-Shire.

From July 17 through 24 2020, our family took a vacation in the Scottish Northwest Highlands. We originally booked a holiday cottage in Gairloch for the week before(July 4 through 11) but the government lock-down owing to the COVID-19 pandemic quickly put paid to that plan. As luck would have it though, the same firm we booked the cottage through offered us another accommodation in the neighbouring village of Poolewe, just six miles from Gairloch for the following week, when shops and restaurants were allowed to open up. Having spent months at home, we naturally jumped at the chance!

The Northwest Highlands is not a place you would want to go for warm summer weather. But for natural beauty and a place to contemplate God’s glorious creation, I can’t think of a better place. The cottage we secured was spacious and comfortable with a large and well maintained garden. There was no internet connection – not even a telephone signal – but after months of the kids sat behind computer screens during the lockdown, it was exactly what the doctor ordered; a place where we could fully re-connect as a family and cast away our anxieties about all the dark events happening in the world.

The cottage, Poolewe.

The village itself only has about 200 inhabitants, many of which are retired couples who have sold up from the cities and moved here to enjoy their autumn years.

This part of the British Isles(57.7 degrees north latitude)  is renowned for its beautiful, pristine beaches and unspoiled coastline, making it a favourite haunt for birders and other nature lovers. In mid July, dark night time skies are out of the question owing to strong twilight. The weather forecast didn’t bode well for star gazing during this week either, so I decided against bringing along a telescope but instead decided to carry a pair of binoculars; little and large – my Leica Trinovid 8 x 20 and my Pentax PCF WP II 20 x 60 high-power binocular which was mounted on a lightweight tripod/monopod. In addition, my eldest son brought along his 8 x 32 compact and my younger boy his 6.5 x 21 Papilio II.

But the trip was not entirely about leisure, at least for my wife. As a research technician in the Department of Biological & Environmental Sciences at the University of Stirling, her research group had been given the task of sampling the sands of the beaches all along the northwest coast to measure a number of radioactive isotopes. This work was commissioned by the Scottish Environmental Protection Agency (SEPA). That meant that we were to visit a number of beaches centred on Poolewe, which worked well for everyone; the boys could enjoy a swim and we could get good walks in along the beach collecting the samples.

Redpoint Beach, Ross-shire. Isle of Skye seen in the distance.

I had decided to bring along my Leica Trinovid 8 x 20 as my main daytime binocular, partly because I had been feeling guilty about treating it more as an ornament than a dedicated field instrument. But as I was to discover, this little binocular is built like a tank(albeit a very small one lol) and was meant to be properly used.  Indeed, I was more than delighted how well it put up with the vagaries of the northwest weather, which can change from bright, calm and sunny one minute, and then wet and windy the next. And during this week away, it endured heating in the Sun, sand, spray and even heavy downpours, coping admirably with the changing conditions. But it wasn’t exactly a free lunch; those difficult conditions meant that I had to clean the optics a couple of times during the week!

No little jessie: the Leica Trinovid 8 x 20 is a rugged pocket glass built for the great outdoors.

Contrary to what some binocular commentators have made, the Leica Trinovid 8 x 20 is easy to use. They claim that the small exit pupil of the binocular(2.5mm) is hard to square on with one’s eyes. But like all things in life, that’s only true for lack of practice. Indeed, I have given mention before that in strong daylight, there is little advantage to using a larger glass as one’s exit pupil shrinks to 2 or 3mm at the most. Furthermore, the best part of the your pupil is the central few millimetres, so when imaging with a small exit pupil you are minimising the optical aberrations inherent to one’s own eyes and this yields fine images only limited by the quality of the glass.

Beaches are excellent places for glassing.

Glassing on the beach is one long adventure. Many types of birds – waders and gulls especially – grace the shoreline – providing many opportunities to study their antics. The  rich colours, contours and grains of rocks, polished by the tides over countless millennia, all kinds of seaweed, beached jelly fish, crabs and other crustaceans, and brightly coloured shells of long-dead sea creatures, present many wonders to the eye, as do the ceaseless activities of the lapping waves constantly yielding their treasures as flotsam, jetsam, lagan and derelict. Each new binocular field presents something new and unfamiliar; endless visual riches provided by our Creator.

The pristine white sands of Melon Udrigle, Ross-shire.

For higher resolution daylight observations, I set up my Pentax 20 x 60 porro prism binocular. This fully waterproof binocular also has a small exit pupil of 3mm, and thanks to its aspherical eyepieces, it delivers a very sharp, high-contrast, flat-field images, with great centre-to-edge correction.

The optically excellent Pentax PCF WP II 20 x 60 binocular.

Mounted to an extra-tall but lightweight tripod, with a strong ball & socket adaptor, the 20 x 60 is ultra-stable and very easy to use and manoeuvre. I was able to enjoy great close-up views of the barren, rocky crags in the surrounding hills, and boats anchored in the shallow bay a mile or so from the cottage. It also provided excellent images of trees in the neighbourhood, where I enjoyed watching crows, wood pigeons and even the occasional collar dove drop by.

The Pentax 20 x 60 is great for monitoring the Sun in white light.

But the 20 x 60 also came in handy for continuing my monitoring of the solar disk using home-made white light solar filters constructed from Baader astro-solar material. Indeed, during brighter spells in the morning or afternoon, I could whisk the binocular-mounted tripod out from the utility room and observe the Sun at a moment’s notice. Indeed, I got a minor surprise when I spotted my second spot of the summer season at 11.43 BST on the morning of July 22. It didn’t grow or amount to very much though – just one tiny sunspot crossing the solar disk. The last time I recorded it was on the afternoon of July 31. I’ve not seen another thus far into August(22nd).

Alas, the Sun continues to be unusually quiescent.

The ultra stable and smooth ball & socket bracket used to mount and move the big 20 x 60 binocular.

There was no night during our trip where I enjoyed long clear spells. The best I got was a couple of nights where the sky was partially clear, but it was enough for me to see Comet Neowise in deep twilight shortly after midnight on the morning of July 19 near the Plough asterism. By then, it had faded back to a third magnitude object, but the image scale in the Pentax binocular was good enough for me to get a decent view of its nucleus and bright dusty tail. I also put the 20 x 60 to good use observing a few choice binocular doubles.The tripod and its ball and socket adaptor allowed me to achieve rock-solid stability and silky-smooth tracking of a number of systems, enabling me to resolve a few targets that I could never achieve using a monopod alone. The 20 x 60 served up gorgeous images of Albireo, the’ fake triple’ system of Iota Bootis, O^1 Cygni, Mizar & Alcor, the lovely orange pair 61 Cygni, Epsilon 1 & 2 Lyrae and the lovely chance alignment of Eta(blue) and Theta (orange) Lyrae, which presented as a grand colour contrast ‘double’ somewhat to the east of the main stars of the celestial Lyre.

On the warm and sultry afternoon of July 22, we took a stroll down the road to pay a visit to one of the most famous cultivated gardens in Scotland. Inverewe Gardens, situated on the shores of Loch Ewe, is home to some of the most exotic floral species in all of Britain, thanks to the mild Gulf Stream which keeps the site largely frost free, even in the depths of winter. Here you’ll find pre-historic trees such as the Wollemi pine, and all manner of  rhododendrons native to China, India and Nepal. Himalayan poppies adorn the beautiful walled garden at the site, as well as fascinating Tasmanian eucalyptus trees with their aromatic leaves and beautiful, variegated trunks. As you can imagine, such a visit wouldn’t have been complete without bringing along the Pentax Papilio II 6.5 x 21 ultra-close focusing binocular, which provides stunning up-close-and-personal views of the many ornate flowers that grace the grounds of this extraordinary place.

Our youngest son, Douglas, proudly carrying the wonderful little Pentax Papilio II 6.5 x 21.

My wife actually wanted to visit these gardens in May, but the lock-down made this impossible. But better to visit in July than not pay a visit at all, I suppose.

Magnificent trees grace the gardens, but I was especially taken by the Eucalyptus. As it turned out, I discovered the same kind of tree at the bottom of the garden in our rented cottage, so my guess is that, at one time in the past, the owners managed to plant a young tree and watched it grow to maturity over the years.

Check out the bark on this Eucalyptus tree.

Here’s a question for you: can a banana tree thrive in Scotland?

Yes!

You what mate?

A banana tree: no bananas though!

We encountered several varieties of Bamboo on our walk too:

Wild bamboo.

In one part of the garden, we stumbled across some wicker soldiers commemorating those who lost their lives in the great world wars of the 20th century:

Wicker soldiers.

The garden had many beautiful flowers in full bloom, like these Violet Geraniums:

Violet Geraniums.

The Pentax Papilio II 6.5 x 21 proved to be the perfect instrument for examining these wonders of creation in exquisite detail. With its ultra-close focus of just 18 inches, can you begin to imagine the levels of detail one can capture?

Say, that’s a queer looking cabbage eh?

Douglas had so lost himself looking at close-up views of the foliage that I had to remind him that the instrument also served as a regular binocular; you know; for glassing objects at a distance! At one stage, I found him strolling ahead on the walk while keeping the Papilio to his eyes. Not a sensible thing to do though, as he was to find out. After issuing him a stern verbal warning, he fell headlong into a flower bed lol! Luckily no damage was done to the flowers or the glasser on this occasion. The gardeners too were none the wiser(phew!).

As I mentioned in my review of the instrument linked to earlier, the Pentax Papilio II 6.5 x 21 is a belter of a small binocular, serving up excellent high-contrast images at a very attractive price (just over £100 UK). I still use it quite often for all kinds of activities.It’s got a big, silky-smooth focuser and delivers a generous 7.5 degree true field. Indeed, I’ve not needed my Zeiss Terra ED 8 x 25 ever since the arrival of this instrument on the scene.

The beach sampling was more a labour of love than anything else. Always done when the tide is out, the bigger beaches required three samples, while the smaller ones only required two. My wife had to carry a GPS system to accurately record the positions of each sample and each one consisted of a few hundred grams of surface material. All of this had to be recorded while the sampling was taking place.

Doing science on the beach.

In the end, 32 bags of sand was collected from 8 beaches. And boy did the collective weight add up!

Sand ain’t light weight!

Just a few yards walk from the cottage stood an old war grave yard with an interesting pre-Christian Pictish stone. But I was much more interested in watching a platoon of screeching Swallows flitting to and fro over the weathered gravestones in pursuit of flying insects with the little Leica glass. It’s not the ideal birding binocular, that’s for sure, with its rather small field of view(6.5 degrees) and small exit pupil compared with a larger compact glass, but it certainly did the job admirably enough throughout the trip.

The old Commonwealth Grave yard, Poolewe.

The cottage had a little booklet advertising all the goings on in the catchment area. My interest was especially piqued by the number of local churches; Catholic, Church of Scotland, the Free Church and the Episcopalians to name just a few. Alas, none were open at the time of our visit but I was pleased to see that many were conducting online services on Sundays to cater for the spiritual needs of their congregations. The people of the northwest of Scotland and the Highlands and Islands still maintain a strong Christian faith; in sharp contradistinction to the secularism now all too common in the main towns and cities in and around the central belt.

The furthest north we ventured was Ullapool, located about 45 miles northwest of Inverness(the northernmost city in the British Isles). Here you can catch a ferry to the Isle of Lewis. Normally, this small seaside town is teeming with tourists at this time of year but because of the pandemic(or is it a scamdemic?) its streets and shops were unusually quiet. We enjoyed having a rummage through the various nick-nack shops looking for small gifts for our family and friends. I was delighted to find a book shop there as well, where I was able to pick up a title on introductory birding by the comedian(remember the Goodies?) and veteran twitcher, Bill Oddie. Truth be told, I had no idea how anyone could say so much about our feathered friends!

It made hilarious evening reading!

Packed full of infectious enthusiasm and many hilarious moments.

There are many fine hills and mountains to climb in the region but on this trip we did not attempt any. Perhaps the most imposing is Ben Eighe, just south of Loch Maree. Towering over 2,000 feet above the surrounding plains, it forms a chain of mountains in Wester Ross, two of which exceed 3,000 feet in elevation and are thus designated proper Munros.

Benn Eighe, Wester Ross.

If the evening remained fine, I would take a stroll down the road from the cottage to do a spot of glassing with the Leica pocket binocular along the River Ewe, linking Loch Maree with the open sea. One of the shortest rivers in the UK, at scarcely one mile long, the Ewe has long been prized by anglers for its Sea Trout and Salmon. And because it is so close to the sea, its appearance can change dramatically from hour to hour!

River Ewe- view from the bridge at high tide.

All in all, this was a very refreshing family trip away, with many fond memories of grand beaches, delicious lunches and gorgeous scenery – all provided courtesy of our Creator.

And, God willing, we will return here again some sunny day!

Looking down on Loch Maree.

Neil English is an avid optics enthusiast who is currently enjoying a new lease of life sorting out what’s what in the world of binoculars. If you like his work, why not consider making a small personal donation or consider purchasing one of his seven books. Thanks for reading!

 

De Fideli.

A Magical Evening with Plotina.

Plotina; the author’s 130mm f/5 Newtonian still strutting her stuff.

It’s hard to believe that four long years have gone by since I first discovered the considerable virtues of a modest 130mm f/5 flextube Newonian reflector. Like the larger 8-inch f/6 Newtonian I switched to in 2015, this 5.1 inch instrument has proven to be an excellent all-round performer, doubling up as a high performance spotting ‘scope by day and a fantastic grab ‘n’ go telescope at night, where its very decent aperture, fine optics, light-weight portabiity and quick cool down time has yielded excellent views of the Moon, bright planets, deep sky fuzzies and a whole raft of double stars.

Shortly after testing the basic SkyWatcher unit, I invested in some modest-costing upgrades to further enhance the performance of this telescope. The secondary mirror was upgraded to one of higher quality and slightly smaller size (26.9 per cent linear obstruction). In addition, I had both the original SkyWatcher primary and upgraded secondary re-aluminised with Orion Optics UK’s proprietary HiLux coatings with 97 per cent reflectivity, giving an overall transmission of 90 per cent at the eyepiece once the area of the central obstruction is also factored in. The original flextube was replaced by a solid aluminium tube from a SkyWatcher 130P, providing a more stable arrangement for the secondary mirror housing. The tube was lined with cork and overlaid with flocking material to minimise stray light and increase image contrast. Finally, both the primary and secondary mirrors were equipped with Bob’s knobs to facilitate easy and quick collimation of the optical train. The resulting instrument sits pretty on a light weight alt-azimuth mount – a Vixen Porta II – which can be used both terrestrially and for astronomical observations.

The Vixen erector lens system used to obtain correctly oriented views with Newtonian reflectors.

In previous blogs I investigated ways to use this small reflector as a terrestrial spotting ‘scope, discovering methods to enjoy correctly oriented terrestrial views using a Vixen erecting adapter.The device allows the use of any eyepiece, thereby creating a spotting ‘scope with a much larger range of magnifications than those offered by conventional spotting ‘scopes. Its much greater light grasp allows me to enjoy crisp and bright high-power images well into twilight.

The 130mm f/5 Newtonian in terrestrial spotting ‘scope mode using the Vixen erector lens.

My 130mm f/5(aka ‘Plotina’) has travelled all over the British Isles with me, safely packed away in its foam-lined aluminium carry case, where it has sampled great skies in southern Ireland, northern England, Scotland and south Wales. These observations strengthened my conviction that there are many places where conditions are good enough to push the resolving power of this Newtonian telescope. Indeed, I have been able to split sub arc second pairs(0.9″) at ultra-high powers (up to 405x) in many of these locations. During summer heat, cool autumn and spring nights and freezing winter evenings, the telescope has never disappointed. Indeed, it has greatly exceeded all my expectations for it!

Portable powerhouse.

Best of all, it has saved me an absolute fortune, allowing me to completely break free from using small, expensive refractors, which became somewhat of an obsession with me for the best part of a decade. And quite frankly, to go back there again would be bonkers!

February 25 2020 Observations

Time: 21:20 to 23:15

Conditions; Cold (1-2 C), mostly clear and transparent skies with no Moon and with intermittent blustery west or northwesterly gusts. Seeing very good (Ant II).

Although the telescope optics takes a good 30 to 40 minutes to obtain the best high power images when taken from a warm indoor environment, it most certainly can be used with immediate effect if you start with low power wide field targets. I’ve recorded quite a few instances in which antagonists claim that the same telescope takes too long to acclimate to be a real grab ‘n’ go contender, but this is based largely on ignorance, laziness or just plain old lack of resourcefulness. In addition, it’s important to stress that I do not employ cooling fans on this or any of my other telescopes.

Accordingly, I initiated the session with low power (26x), larger deep sky objects, beginning with some showpiece open clusters such as the Double Cluster in Perseus, which was beautifully rendered in the wide, 2.3 degree true field served up by my Celestron X-Cel LX 25mm ocular.  From there, I ventured over to the large and bright open cluster M34 (also Perseus) enjoying several dozen stellar members, many of which are arranged in neat double or triples(mostly telescopic in nature), and then ventured southward into Gemini now sinking into the western sky, where I enjoyed a stunning view of the expansive M35, the excellent light grasp of the reflector showing up many fainter members that are either invisible or very faintly rendered in smaller (4-inch and under) refractors. The 130mm F/5 is a particularly good telescope for observing this sprawling Messier open cluster, combining the near-ideal combination of aperture, magnification and field of view to fully immerse myself in the view.

Camelopardalis was well situated high in the sky and so I sought out an opportunity to track down Kemble’s Cascade, so named after the late Canadian observer, and Franciscan friar, Father Lucian Kemble(1922-1999), who first called the amateur community’s attention to this remarkable, linear array of  15 or so stars tumbling down to the small open cluster NGC 1502 across the border in Cassiopeia. Spanning a full 2.5 angular degrees, Plotina was not quite able to encompass the cascade in its entirety. That said, the telescope served up a wonderful sight of stars ranging in brightness from the fifth to the 9th magnitude of glory. It is all the more remarkable that Kemble actually chanced upon this visually striking asterism using diminutive 7 x 35 wide-angle binoculars!

After spending a few minutes drinking up the view of the mangnificent Beehive Cluster M44 in Cancer, the telescope was now sufficiently well cooled to crank up the power to get some close-up views of the three Messier open clusters in Auriga. For these, I employed a power of 118x(Meade Series 5000  5.5mm UWA) in a generous 0.7 degree true field. All three clusters are visually striking in the 130mm f/5 at this moderate power, but by far the most fetching in my opinion is M36, which transforms from a small foggy patch about one third of the size of the full Moon in 8 x 42 binoculars(also accompanying me at the telescope) into a granular mound of faint stars some 5 dozen strong. Increasing the magnification to 135x using my 4.8mm T1 Nagler improved the view still further by helping to pull the faintest members of this cluster out of the background sky.

I was now ready to visit a suite of my favourite seasonal doubles well placed for observation on late February evenings. I began in Auriga, centring the bright white star Theta Aurigae. Cranking up the power 236x(Meade UWA 5.5mm and 2x Orion Shorty Barlow) and carefully focusing, I was delighted to obtain a near perfect image of the bright primary and the spark of the much fainter secondary tucked up close to it. This is quite a tricky system to image well though, and is thus a good test of seeing conditions at my backyard observing site, but tonight presented good conditions(as they often do here and elsewhere), so I knew that visiting a few other tricky systems would be a worthwhile pursuit on this fine evening.

Off I sped to enjoy an easy system first; Castor A & B, which was beautifully rendered at 236x in the 130mm, the two bright components presenting as pure white Airy disks, with the much fainter C companion easily seen wide away. From there I moved the telescope a little way ‘down’ the western sky until I centred  creamy Wasat (Delta Geminorum). The challenge here is to bag the exceedingly faint and close-in companion shining nearly five stellar mangnitudes fainter. I have found, through experience, that the Meade UWA 5.5mm yielding 118x provides the most compelling view of this optically delicate companion. The older 4.8mm T1 Nagler is not as good as the newer Meade ocular in showing this system at its best. I attribute this to slightly better coatings applied to the newer eyepiece. Attempting to push my luck, I panned the telescope a little to the northwest to the lovely marmalde orange star, Eta Geminorum(Propus) but even after crankning up the power to 270x and 354x, I was unable to resolve its very close-in companion. That said, this system was by now well past meridian passage and sinking lower into more turbulent air in the western sky.

As the evening progressed, Leo was now beginning to assert itself still somewhat east of the meridian. After a few minutes enjoying the rich aureal tints of Algieba(Gamma Leonis) and its companion, I panned the instrument southeastward until I centred Iota Leonis in the 6 x 30 finder accompanying the main telescope. This is quite a challenging system to resolve, consisting as it does of a 4th magnitude yellow-white primary and 7th magnitude secondary in a close-in orbit. Starting with 238x, I was able to discern the secondary as a tiny pimple like projection off the primary, but when I cranked up the power to 354x (3x Meade achromatic Barlow and 5.5mm Meade eyepiece),  and watching the system move rapidly across the field from east to west, I was finally able to see the secondary intermittently detached from the primary.  That said, I could have done with another hour and a half of waiting until it reached its maximum altitude in the south, but I was just happy to be able to resolve the system reasonably well at this earlier time of about 11pm local time.

Re-visiting Cassiopeia, still well placed high in the northern sky, I was able to enjoy a wonderful view of the lovely triple system, Iota Cassiopeia, which was easily resolved into its three components at 236x with the 130mm Newtonian. Nearby Eta Cassiopeia, with its comely red and yellow components widely spaced at 236x was also a worthwhile system to visit on this cold February night. Images remained sharp, crisp and contrasty even at these high telescopic powers.

Taking a quick break with my 8 x 42, I ventured to the front of the house, where I noted a rather lobsided Plough high in the northeast and lower down, the main stars of Bootes had by now cleared the murky air above the Fintry Hills to the east of the house. I then decided to move the telescope on its Vixen Porta II mount(which I can easily manoeuvre with one hand). Aiming my 6 x 30 finder at the two Alulas in Ursa Major, I centred each system in turn in the 130mm reflector. Alula Australis was truly a sight for sore eyes at 236x, the two stars presenting with beautiful, round yellow Airy disks separated by a sizeable sliver of dark sky. This is a fascinating system to watch with a small backyard telescope, where both 4th magnitude components complete one orbit of their barycentre in just 60 years! Ruddy Alula Borealis presented a different kind of challenge though, rather like Delta Geminorum observed earlier in the vigil. Using the very high contrast views of the Meade UWA 5.5mm, I was able to just make out the tiny and very faint spark of light of its close-in secondary at 118x.

I ended this late February observation session by trying my hand at Epsilon Bootis(Izar), a favourite Spring binary system. still quite low in the east at or shortly after 11.15pm local time. Deciding on a moderately high power of 238x, Plotina managed a decent split of this gorgeous colour-contrast pair(yellow and blue), but its low altitude was, of course, attended by increased atmospheric turbulence.

The title of this blog included the word, ‘magical,’ with the implication that there was something out-of-the ordinary about what the 130mm Newtonian can show. The truth is that these targets, especially the high-resolution systems discussed, can be enjoyed fairly routinely with this telescope from many locations(you just have to test them) and it is my fondest hope that others will take up the same challenges with their small Newtonian relectors.

 

Neil English has created a considerable volume of literature highlighting the many attributes of the 130mm f/5 Newtonian. He is seriously considering writing a full length manuscript of his experiences with this transformative instrument at some time in the future.

 

De Fideli.

 

 

For the Record.

Plotina: raising the bar for grab ‘n’ go astronomy.

 

2018 was not an unusual year here in Scotland, as astronomical observing and associated note-making are concerned.

Total number of nights where observations were made in 2018: 137

Percentage of nights available for observation in 2018: 37.5 per cent.

 

 

2019: I recorded 135 nights of clear or partially clear skies. This represents 36.9 per cent of nights available for observation.

These numbers continue to be in accord with the claims of several British historical observers; T. W. Webb, William F. Denning & Charles Grover.

For more details on this interesting topic, see my 2018 book: Chronicling the Golden Age of Astronomy.

 

De Fideli

Old vs New.

How does a classic Zeiss binocular square up to a modern roof prism binocular?

Unlike telescopes, which are mainly used by dedicated amateur astronomers, binoculars, for obvious reasons, are owned and used by a much broader cross section of the general population. When my students get to know me, they will inevitably have to endure my unbridled enthusiasm for optical devices of all kinds lol, and that includes binoculars. One of my mathematics students, Sandy, expressed an unusual interest in some of my instruments, and he further informed me that his parents, who run a small ferrying business at Balmaha, on the shores of nearby Loch Lomond, used several binoculars in their everyday work. My interest was further piqued when Sandy told me that his grandfather owned a big Zeiss binocular, which was inherited by his father and would eventually be passed on to him in the goodness of time. I asked Sandy whether he would be willing to bring the Zeiss binocular by so that I could have a look at it. After checking with his parents, Sandy agreed and kindly allowed me to use it for a week in order that I could assess it and give it a good clean. Naturally enough, I jumped at the opportunity!

The instrument, a Carl Zeiss Jenoptem 10 x 50W porro prism binocular, came in a lovely leather case; a far cry form anything made in this era.

The Zeiss Jenoptem 10x 50W complete with original leather carry case.

The instrument had no lens caps and so had accumulated quite a bit of grime on both the ocular and objective lenses over the years. The Jenoptem, which was manufactured in East Germany(DDR), featured a Zeiss multi-coating, which helped me to date it to after 1978, when the company apparently began to apply their anti-reflection coatings to all the lenses and prisms in the optical train. So my guess is that it was probably acquired in the early 1980s. I believe Zeiss Jena offered a higher quality porro 10 x 50 in the Decarem line around the same period, but I have not had the pleasure of testing one of these units out.

The Zeiss Jenoptem is multi-coated.

The instrument has a very Spartan look and feel about it. Weighing in at about 1 kilogram, the Jenoptem is built like a proverbial tank, with a central focusing wheel and right eye dioptre.Turning the nicely machined metal focusing wheel first clockwise, and then anti-clockwise, all the way through its trave,l showed that it was still in excellent working condition, with zero backlash and bumping that one usually encounters with cheaper porro prism binoculars.

As expected from Zeiss, the Jenoptem has a very well made focuser that moves with silky smoothness and with zero backlash.

To begin the cleaning process, I unscrewed the objective housings from the front of the binocular in order to get at the inside surface of the objective lenses, which had a significant amount of grime as well as a small amount of fungal growth. Using a good quality lens brush, I carefully removed much of the dust before using a microfibre lens cleaning cloth soaked in a little Baader Optical Wonder fluid. In just a few minutes I was able to remove the remaining grime on both the outer and inner surfaces of the binocular objectives, as well as the surfaces of the prisms in the rear module of the instrument. The ocular lenses were also given a good cleaning.

The objectives of the Zeiss Jenoptem can be accessed by uncrewing the front of the binocular from the prism and ocular housing.

I was able to verify that the prisms were indeed coated in the same way as the objectives, although I also discovered that the steel clips holding the prisms in place had rusted significantly over time. I did not attempt to clean the clips, as I judged that doing so might throw the instrument out of collimation.

Note the rusted steel clip holding one of the prisms in place, as well as the anti-reflection coating of the second prism(after cleaning).

The objectives on the Jenoptem after cleaning. Note the anti-reflection coatings.

Seen in broad daylight, I was able to verify that the lens coatings had not suffered much in the way of wearing, looking smooth and evenly applied, giving a bluish or purple cast, depending on the angle of view.

The appearance of the objectives in broad daylight after cleaning.

 

And the ocular lenses.

Optical tests:

After screwing the objective modules back into place, I was now ready to begin my optical tests of this older Zeiss binocular. I compared the views served up by this instrument with those garnered by my Barr & Stroud 10 x 50 Sierra roof prism binocular that I use almost exclusively for astronomical viewing. After setting the right eye dioptre on the Zeiss to suit my own eyes, I started with an iphone torch test to assess how the instruments fared in suppressing glare and internal reflections.

The Zeiss 10x 50W Jenoptem(right) and my Barr & Stroud 10x 50 Sierra roof prism binocular(left).

Because the Zeiss does not have the same close focus (~2m) performance as my Barr & Stroud, I had to place my iphone torch several metres away in my hallway in order to get the Zeiss to focus on its light. As usual, the torch was adjusted to its highest (read brightest) setting. Comparing the two in-focus images, I could see that the Zeiss fared considerably worse than the Barr & Stroud. Specifically, it picked up two fairly bright internal reflections, as well as quite a lot of contrast-robbing diffused light, which rendered the Zeiss image considerably less clean and contrasted in comparison to my control binocular. The difference was quite striking!

After dark, I aimed the binoculars at a bright sodium street lamp and again compared the images served up in both instruments. As expected, the Zeiss showed much more in the way of internal reflections, with a lot of diffused light that produced a fog-like veil around the street lamp. The Sierra 10 x 50 in comparison served up a much more ‘punchy’ image with much better control of internal reflections and far less of the foggy, diffused light evidenced in the Zeiss.

Next, I compared the Zeiss and the Barr & Stroud Sierra on a daylight test, examining a tree trunk in the swing park about 80 yards from my front door. Again, the difference between both instruments was striking! Although the image was very sharp in the Zeiss at the centre of the field, it was noticeably dimmer than the Sierra. That diffused light I picked up in the iphone torch test created a foggy veil that significantly reduced its contrast in comparison to the control binocular. I was also able to discern many more low contrast details in the Sierra owing to its ability to gather significantly more light than the older Zeiss. The colour cast presented by both binoculars was also noteworthy. The Zeiss threw up quite a strong yellowish colour cast  to the Sierra, which showed a much more neutral cast in comparison.

Examining the periphery of the same field also showed that the Sierra was exhibiting a larger depth of focus than the Zeiss, which was quite unexpected, as I had been given to understand that porro prism binoculars in general show more depth of focus than their roof prism counterparts. In addition, the Zeiss showed more distortion at the edges of the field than the control binocular.

The Zeiss Jenoptem has very tight eye relief, which I estimated to be just 10mm. The Barr & Stroud Sierra, in contrast, has much more generous eye relief in comparison- 17mm – making it significantly more suitable for eye glass wearers. Indeed, I found it difficult to image the entire field in the Zeiss, having to move my eyeball around to see the field stops.

In summary, these daylight tests clearly showed that the venerable Zeiss was no match optically for the Barr & Stroud 10 x 50 roof prism I had tested it against. The latter was simply in a different league to the former, no question about it!

Handling in the Field:

The Zeiss is rather big and clunky in my small hands and is more difficult to find that optimal position while viewing for extended periods. Weighing more than 200g more than the Sierra, it is also harder to hold steady. The significantly smaller frame of the Sierra roof prism binocular is much easier to negotiate, and is simply more comfortable to use. In addition, the Zeiss has no provision to mount it on a lightweight tripod or monopod, but the Sierra, like most other modern binoculars, does.

Astronomical tests:

Though the weather proved quite unsettled during the week that I tested the Zeiss, I did get a few opportunities to test it out on the night sky. Once again, I used my Barr & Stroud Sierra 10x 50 roof prism as a suitable control. My first target was a bright, waxing gibbous Moon fairly low in the southern sky. The Zeiss threw up more in the way of internal reflections than the Sierra. The colour cast of the lunar surface appeared more yellow in  the Zeiss compared with the cleaner images of the Sierra. As I expected from my iphone torch tests, the sky immediately arround the Moon was also brighter in the Zeiss, with noticeably lower contrast than the Sierra. Moving the Moon to the edge of the field also showed that the Zeiss threw up more distortions than the Sierra control binocular.

Turning to Vega high in the northwest after sunset produced good on-axis images in both binoculars, but when moved to the edge of the field, the Zeiss threw up that little bit more distortion than the Barr & Stroud Sierra. The same was true when I examined the Pleaides and the Hyades in Taurus.

Conclusions and Implications:

The Zeiss Jenoptem was a good binocular in its day but is clearly inferior in almost every sense to the Barr & Stroud roof binocular used in comparison. 40 years ago, the Zenoptem would have set the average factory worker a whole month’s salary to acquire new. In contrast, the Barr & Stroud Sierra can be had for between £100 and £120 in today’s market.  The value of waterproofing was made manifest in the observation of rusting of some of the metal internal components of the Zeiss. The Sierra, in contrast, is fully waterproof, o-ring sealed and purged with dry nitrogen gas to inhibit internal fogging and corrosion of any metallic components used in its construction.

Enormous advances in optical technology over the last four decades, particularly full broadband multi-coatings applied to all lens and prism surfaces, higher quality optical glass, as well as phase coated prisms on the roof binocular, collectively allow very efficient light transmissions to the eye. This is all the more remarkable since roof prism designs usually have many more optical components than their porro prism counterparts.

Better eregonomics in modern roof prism binoculars as well the employment of strong, low mass polycarbonate housings in their design make them lighter and easier to use than their porro prism counterparts from a generation ago. All of these add to the comfort of using them either during the day or at night when looking at the heavens.

I had a look on ebay to see what these old Jenoptems were being offered for. I found quite a few of them selling for between £150 and £200, so not the high prices demanded by other classic binoculars.

Like with all optical firms, time has marched on, with modern binoculars offering much better performance than earlier models.

This comparison test must have implications for many people who already own or use older binoculars and who have not compared them to modern incarnations. And that’s as true for Zeiss as with any other manufacturer. Indeed, I was quite shocked at how much better my first quality roof prism 8 x 42 roof prism binocular fared compared to an old 7x 50 porro I was gifted back in the early 1990s. Technology has well and truly marched on! And while I like classic instruments just as much as the next guy, I see little point in using any when even modest instruments created in the modern age are likely to perform better than similar instruments made a generation ago. It’s just a hard fact of life.

The technology of the past is certainly interesting but it would be daft to neglect the advances offered in the modern era.

 

I would like to extend my thanks to Sandy and his parents for allowing me to test drive these old binoculars. I will be advising him to use lens caps on the optics when not in use and have also provided a sachet of silica gel dessicant to minimise moisture-induced corrosion of the optic.

 

Neil English discusses all manner of classic telescope technology in his 650+ page historical work, Chronicling the Golden Age of Astronomy(Springer-Nature).

 

De Fideli.

A Magical Hour with my 130mm F/5 Newtonian.

A grab ‘n’ go telescope on steroids.

Anno Domini MMXIX

My conversion to Newtonian telescopes continues apace. Though I’ve had my wonderful 130mm f/5 Newtonian travel ‘scope for a few years now, it never ceases to impress me. And my observations on the freezing night of November 18 with the same instrument only served to consolidate those sentiments.

I set the telescope out on its trusty Vixen Porta II alt-azimuth mount about 10.30pm local time and tweaked its collimation before leaving it to cool down from an indoor temperature of 20C to an outside temperature of -5C. The optical tube is quite rigid and it holds accurate collimation very well, which is fine for general observing, but I always fine-tune the alignment of its two mirrors when going after the tightest double stars. I knew conditions would be good for such an activity by noting how little Vega was twinkling low down in the western sky, while bright stars like Capella and Mirfak located high overhead shone with a steady, planet-like gleam.

The tube is insulated with a thin layer of cork and overlaid by black flocking material. I have noted that this affords extra thermal stability to the telescope, especially as temperatures drop rapidly(as occurs during acclimation on these cold nights). I do not use any air-blowing fans to accelerate cooling of the primary mirror, but this has never really been an issue with this small Newtonian telescope.

After enjoying a lengthy binocular session using my 20 x 60 on a simple monopod, I began an hour of telescopic observations on a number of seasonal double stars, beginning about 11:20pm. Orion was quite well placed  east of the merdian, so I inserted my Meade 5.5mm UWA yielding 118x on a fairly low lying Rigel, carefully focused and observed the stellar image. Wow! What an amazing apparition! I was greeted by an intensely bright image of this white supergiant star, with beautiful diffraction spikes radiating outwards from a calm Airy disk. And just a little to its southwest, its faint close-in companion was easily discerned. That was enough of a confirmation that seeing conditions were indeed very good, so from there I panned the telescope northward to the better placed belt stars of Orion, examining both Mintaka and Alnitak at the same power. The images of both stellar systems were lovely and calm, with beautiful hard Airy disks betraying their companions with ease.

From there, I moved up to a more challenging system, 32 Orionis, located just a few degrees east-southeast of Bellatrix. Coupling a 3x achromatic Barlow lens to the Meade 5.5mm yielding a power of 354x, I carefully focused the image, watching it as it raced across the field of view. Sure enough, its close-in companion(separation ~ 1.3″) proved easy pickings for this light-weight 5.1-inch telescope situated just off to the northeast of the primary. Before leaving the celestial Hunter, I had a quick look at Eta Orionis, another fine, high-resolution target, consisting of a magnitude +3.6 primary and a tight, magnitude +4.9 secondary. Both were nicely resolved at 354x, and roughly orientated east-to-west.

Pointing the telescope at majestic Auriga, now very high in the sky, I trained the instrument at Theta, an old friend, and backed the magnification down to 236x by swopping out my 3x Barlow for a 2x Orion Shorty. That was more than enough to resolve its ghostly companion in the still midnight air.

I spent the next quarter hour exploring some favourite doubles in Cassiopeia, notably the lovely colour contrast pair, Eta Cassiopeiae, admiring the textbook perfect images of its yellow primary and ruddy secondary at 118x. And from there I moved to Iota Cassiopeiae, beholding this beautiful triple system at 236x. These views inspired me to swing the instrument westward into Andromeda, where I quickly tracked down another binary superstar, Almach, where the telescope showed me a gorgeous, crisp image of the orange primary and widely separated blue secondary at 118x.

After a quick look at Castor A, B and C at 118x, I trained my eyes on Propus, the ‘orange nemesis,’ as I have come to call it, which by now was reasonably well placed but still a few hours from culminating in the south. This system requires very high powers, so I broke out my 4.8mm T1 Nagler and coupled it to my 3x Barlow lens, delivering a magnification of 405 diameters. Carefully focussing the star, I watched it cross the field of view several times, observing its behaviour at this ultra-high power. During some moments, the system swelled up to become a rather unsightly seeing disk owing to a combination of thermal stress and variations in seeing, but sure enough, there was always prolonged moments where the image came together, as it were, allowing me to carefully examine the stable Airy disk. And it wasn’t long before I began to see the little blue pimple of light from its tiny secondary touching the marmalde orange primary. Having examined this system quite a few times with the 130mm Newtonian over the last few years, I have learned that good seeing doesn’t always yield commensurately good results. This I attribute to the slightly variable nature of this post-main sequence star, which can often hide the companion. But tonight, my patience paid off!

Plotina: strutting her stuff at -5C.

I ended the vigil shortly before half past midnight local time, by moving the telescope from my back garden to the front of the house, where I was greeted by the light of a silvery last quarter Moon, hanging above the Fintry Hills to the east. Inserting the little 4.8mm Nagler delivering 135x, I enjoyed some wonderful, crisp images of the battered lunar regolith, particularly the majestic Apennine Mountains strewn across its mid-section, near the terminator, as well as the magnificent desolation of the heavily cratered southern lunar highlands.

Simple pleasures of a telescope.

It was good to get out. But it was equally nice to retire the telescope indoors and reflect on the experience, sat next to a warm coal fire.

 

 

De Fideli.

 

 

 

Return to Wigtown: October 2019.

The driveway up to East Kirkland Farm, Wigtown.

Our annual family October vacation almost never happened this year. Our car gave up the ghost, necessitating the purchase of a new one just a week before our planned trip, and then, to add insult to injury, our fan oven died, requiring us to pay out still more cash to get it replaced. Luckily, I had just received an advance on my new book, as well as my first pay cheque for my debut feature-length article in Salvo Magazine, outlining the scientific case against extraterrestrial life.  Unfortunately, the holiday cottages at East Kirkland Farm were almost fully booked by the time we made our enquiries, and all the proprietors could offer us was a few days, starting on Wednesday October 16 until the end of the week. Trying to salvage some quality time away, we jumped at the chance and decided to go for it!

This was our fourth trip down to Wigtown, located at the very southwest tip of Scotland. As I have documented in previous blogs, I have enjoyed some beautiful, pristine skies here in the past, using a variety of hand-held binoculars and telescopes . What I mainly wish to report here is one night of observations, which took place at East Kirkland on Wednesday, October 16 2019.

I took along my trusty, high-performance 130mm F/5 travel Newtonian reflector in its padded aluminium case and my new pocket binocular; a Zeiss Terra ED pocket 8 x 25mm, for daylight observations of the landscape. I elected not to take my larger binoculars as there was a bright, nearly full Moon in the sky, which would rise early in the evening making observations with larger binoculars almost impossible to conduct. No, I would be using the Newtonian to carry out some observations of a suite of double stars, both easy and some more challenging, as these are largely unaffected by the presence of a bright Moon.

Two wonderful travelling companions.

After driving through an active weather system in the morning, the skies cleared as we approached Wigtown and the afternoon turned out to be sunny and reasonably warm, with only a few clouds in the sky.  After unpacking, I set up the 130mm on my old Vixen Porta II alt-azimuth mount in the shade of a garden tree where I was able to enjoy wonderful, ultra-high-powered views of the hinterland. As I expained in previous blogs, this little Newtonian is an excellent spotting ‘scope, possessing  superior light grasp and constrast that easily exceeds the performance of conventional spotting ‘scopes that often cost considerably more. This is especially apparent in low light conditions that are all too common during the shorter days of late autumn and winter.  Alas, I didn’t bring along my Vixen erecting lens but I didn’t really need it. I just drank up the views at 118x of tree trunks and branches, golden autumn leaves and bramble bushes, still drenched by the rainfall that occurred that same morning,  just a few tens of yards away in the distance. Indeed, of all the kinds of optical equipment now availalble to the nature lover, conventional spotting ‘scopes make little sense to me. Why fork out so much for an instrument that is severely limited by its small (70-100mm) aperture?

Plotina, my wonderful 130mm f/5 travel Newtonian delivering some ultra-high powers of the terrestrial creation on the afternoon of October 16, 2019.

The evening remained largely cloud free but I knew that a nearly full Moon would be rising early in the east, at about 7.30pm local time. Conditions were quite different to the other occasions I have observed here in past journeys. This time, there was hardly any wind all day and the evening brought some high altitude cirrus cloud and lower altitude cumulus that came and went as the evening dragged on. Still, a quick look at Delta Cygni showed that conditions were, once again, excellent(Ant I-II). The faint companion was steadily seen and observed at 354x (Meade Series 5000 UWA coupled to a 3x Meade achromatic Barlow). The Airy disks were tiny and round with a single, delicate diffraction ring surrounding the bright primary.

Moonrise over Wigtown, as captured at 20:58 h on Wednesday October 16, 2019.

During our summer trip to Pembrokeshire, South Wales, I forgot to bring my flexi-dew shield, which forced me to adopt a totally different strategy while observing. Thankfully, the dew shield came with me this time and it proved indispensable as these calm conditions would bring a heavy dew.

I really got stuck in after supper, just after 8pm local time, visiting a suite of favourite double and multiple stars witth Plotina. Albireo in Cygnus was mesmerizing with lovely calm Airy disks displaying their true colours(the reflector afterall is a true achromatic telescope) in the telescope at 118x. Moving over to Mu Cygni, I cranked up the power to 354x to cleanly resolve the two close companions and a bright field star wide away. Moving into Lyra, I got a text-book perfect split of the four components of Epsilon 1 & 2 Lyrae at 118x but an altogether more satisfying split at 270x (4.8 mm T1 Nagler coupled to a 2x Orion Shorty Barlow) . And to give the reader an idea of how good the skies were here at this time, I was able to cleanly split Epsilon Bootis at 118x and 135x, even though it was very low in the western sky at the time of observation!

Moving to the southwest sky, I turned the little Newtonian on Pi Aquliae and was rewarded by a very crisp splitting of this near-equal brightness pair at 354x. I then moved the telescope on Polaris, the pole star and enjoyed a lovely calm view of its very faint companion at 118x. The same was true of Mizar & Alcor, which  presented a downright dazzling light show in the telescope at 118x.

By 9pm, Cassiopeia was well positioned high in the sky and I turned the telescope to another system, that up to relatively recently was considered tricky by dyed in the wool refractor nuts. I speak of course of Iota Cassiopeiae, which was easily resolved into its three components at 118x. The view was far more compelling at 354x though! From there, I panned the telescope across to Eta Cassiopeiae, where the telescope presented a beautiful, ruddy primary and yellow secondary some three magnitudes fainter(magnitude +7.5)

At about 9.30pm local time, I turned the telescope on another autumn favourite; Almach; which presented gloriously with its orange and bluish components in the Newtonian at 118x and 354x. Finally, I tracked down another very close system, 36 Andromedae, a 1.0″ near equal brightness pair. Centring it in the field of view using the slow motion controls on the Vixen Porta II mount, I cranked up the power to 354x to behold a wonderful sight; two tiny Airy disks with a sliver of dark sky between the components! Reaching for the 4.8mm Nagler, and coupling it to my 3x achromatic Barlow lens, the power was increased to 405x, where I was still able to stably hold both components as they raced across the field of view from east to west.

Some folk might form the erroneous view that these conditions must be rare in the British Isles, but I have conclusively de-bunked that opinion(promulgated by lazy, arm-chair amateurs unwilling to do any field work of this nature). There are, in fact, many places in Britain and Ireland which give the same kind of excellent performance with this little Newtonian reflector. So, it has nothing to do with sheer dumb luck, but all to do with diligent enquiry!

The next day, October 17, proved a washout, unfortunately. Frequent heavy showers of rain put a severe dampener on the vacation and these showers persisted right into the early and late evening, so I didn’t bother to use the telescope. That said, I have one additional memorable observation to report during the wee small hours of October 18. Sticking my head out of doors at 1.20 am local time showed a bright waxing Gibbous Moon skirting very close to the bright star, Aldebaran. Reaching for my little Zeiss Terra pocket binocular showed me a most arresting sight! The Moon was just a few degrees directly east of the horns of Taurus, looking for all the world as if it were about to lock horns with the celestial bull. I watched in sheer amazement as some clouds blew across the Moon from west to east, blotting out some of the glory of the stars of the Hyades, but in the process, creating a wonderful display of light and colour, as the low-altitude rain clouds approached and then receded from our bright, natural satellite. I only wished I had brought along my 8 x 42 Savannah binocular to capture still brighter images of this marvellous apparition, but hindsight is indeed a wonderful thing!

It would have been nice to have another night to accumulate more data at this site but it was not to be. Still, it was good to get away, if only for a few days.

A capital grab ‘n’ go telescope. Powered by human muscle, eyes and brains.

I would continue to encourage others who have a small Newtonian telescope like this to perform their own field tests on these and other double stars. I mean, it’s all very easy to falsify, isn’t it? You just need to collimate accurately and allow enough time for the telescope to acclimate fully to the outside air. That said, If time is against you,  it’s best to start with the easiest pairs and move onto the tighter ones as the telescope nears full equilibration.

Good luck with your adventures!

Neil English is the author of seven  books. His largest work, Chronicling the Golden Age of Astronomy, provides a historical overview of many astronomers from yesteryear who used Newtonian reflectors productively in their exploration of the heavens.

 

De Fideli.