Astronomy with an Opera-Glass: Redux.

A trip down Memory Lane with a grand old book & opera glasses.

 

Astronomy With an Opera Glass (1888) by Garrett P. Serviss

Brief biographical outline: Garrett Putnam Serviss was born on March 24 1851 in Sharon Springs, New York, and educated at Johnstone Academy, New York. After finishing high school, Serviss entered the newly established Cornell University in 1868, graduating with a B.S. degree in Science with honours in 1872. During his time at Cornell, Garrett’s flare for the written and spoken word flourished, so much so that he won awards for poetry. After graduating, Serviss enrolled at Columbia College Law School and in June 1874, received his LL.B and shortly thereafter was admitted to the New York State bar. But practicing jurisprudence as a profession proved to have little appeal to the young man, so he tried his hand at journalism, accepting a job as a reporter and correspondent for the New York Tribune, which he pursued for two years. In 1876, he secured a job at The Sun ( not to be confused with the filth-filled modern newspaper bearing the same name!), becoming copy editor of the paper after just a few years of service. It was during his time at The Sun that Serviss began writing popularised science articles and in particular, a string of articles on amateur astronomy. Indeed, he was so successful in his popuular science writings that his employers created a special role for Serviss as ‘Night Editor,’ a post he maintained for ten years, from 1882 through 1892.

Like so many astronomy enthusiasts, Serviss’ interest in the celestial realm began in childhood on his parent’s’ rural farmstead, where his young eyes would have beheld the preternatural beauty of the night sky, arching from horizon to horizon. As his notoriety grew, Serviss was sought out by a growing fan base, who invited him to give public lectures in astronomy aimed at a lay audience. This allowed him to travel the length and breadth of the country and even on trips abroad to evangelise his love of the night sky. His great success as a science communicator led him naturally to a career as a professional writer, turning out a string of magazine articles and books; both fictional and non fictional, including A Trip to the Moon, Pleasures of the Telescope, and Astronomy in a Nutshell. Arguably his greatest and most far-reaching work in amateur astronomy was his Astronomy with an Opera Glass, which was first published in 1888, the subject matter of this blog.

Garrett P. Serviss (1851-1929).

Serviss was, through and through, a man of the great outdoors, enjoying hill walking and mountain climbing well into his autumn years. One of his greatest personal acheivements was to reach the summit of the Matterhorn in the Swiss Alps, which he accomplished aged 43 years. “It was done,” he said, “in an effort to get as far away from terrestrial gravity as possible.”

Among his other creations is a “Star and Planet Finder:” a forerunner to the modern planisphere, which he marketed in collaboration with a one Mr. Leon Barritt, which proved to be an indispensable science tool for school children throughout the United States. Serviss married Miss Eleanore Belts and together they had a son, Garrett P. Jnr., who excelled at athletics, winning the silver medal for his country in the High Jump at the 1904 Olympic Games in St. Louis. Sadly, Eleanore died in 1906, and just two days before Christmas 1907, his son also died whilst attending Cornell University.

In later life, Serviss re-married a Madame Henriette Gros Gatier, who hailed from Cote d’Or, France, raisng her two children to adulthood. The recipient of many literary and scientific honours, Serviss was well travelled and comfortably well off for much of his long life. He died aged 78 years, survived by his second wife, stepdaughter and stepson.

Overview of the Book: Astronomy with Opera Glasses: A popular Introduction to the Study of the Starry Heavens With the Simplest of Optical Instruments, was originally published in 1888 by D. Appleton & Company, London. This author will be making use of a high-quality modern re-print by Forgotten Books. The interested reader can also access an online version of the manuscript which can be perused here. 

The book consists of a short introduction, followed by five chapters covering the four seasons, as well as a chapter dedicated to the Moon and the planets. It is a short book in the scheme of things, with just 154 pages.

Introduction:

Stargazing was never more popular than it is now. In every civilized country many excellent telescopes are owned and used, often to very good purpose, by persons who are not practical astronomers, but who wish to see for themselves the marvels of the sky, and who occasionally stumble upon something that is new even to professional star-gazers. Yet, notwithstanding this activity in the cultivation of astronomical studies, it is probably safe to assert that hardly one person in a hundred knows the chief stars by name, or can even recognize the principal constellations, much less distinguish the planets from the fixed stars.And of course of the intellectual pleasure that accompanies a knowledge of the stars.

Page1

………………………………………………………………………………………………………………………..

Author’s comments: To me, the written and spoken word of the English language reached its zenith at the end of the 19th century, during what we might call today the Late Victorian era. Back then, morals were clear, unambiguous and understood by all and sundry. Men were men and women could be women. Granted, life was considerably harder than it is today, but it was also more purposeful with it. People had a clear idea of what their roles were in an ordered and harmonious society; a society that cherished self sufficiency and honest work. Garrett Serviss, in his elegant writings from this long forgotten era in human history, provides us with a glimpse of what the glory of the heavens meant to a man of letters. But like so many men of his ilk, Serviss can trace his earliest days to humble beginnings on a rural farmstead run by his family. The stars were a comfort to those agrarian people, who still looked to them as signposts or timepieces, marking the passage of the seasons; auguring the time of sowing, reaping and threshing.

……………………………………………………………………………………………………………………………….

Continuing the introduction, Serviss calls to mind the brilliant apparition of Venus in the early summer of 1887, when its great white light illumined the sky over Brooklyn Bridge. Many individuals, so Serviss informs us, thought it was the light from the Statue of Liberty. He continues;

And as Venus glowed in increasing splendor in the serene evenings of June, she continued to be mistaken for some petty artificial light, instead of the magnificent world that she was, sparkling ou there in the sunshine like a globe of burnished silver. Yet Venus as an evening star is not so rare a phenomenon that peple of intelligence should be surprised at it.

pp 2

To Serviss, the general ignorance concerning our nearest planetary neighbour provides an excellent backdrop for what he considers to be an even deeper ignorance of the stars, “the brother of our great father, the Sun.”  Serviss links this perceived indifference to the stars to the largely mathematical nature of professional astronomy which tended to intimidate those without a penchant for precision and calculation. Luckily, though Serviss was undoubtedly acquainted with some advanced technical learning, the methods in this work entirely dispense of any need for such erudition.  The heavens have a natural beauty that appeals to the human mind, whose heart has a deep longing for eternity, as King Solomon of old so eloquently expressed in the Book of Ecclesiastes (3:11).

Serviss also has the presence of mind to allay fears that a sound knowledge of the heavens can only be achieved by possessing a large and expensive telescope:

Perhaps one reason why the average educated man or woman knows so little of the starry heavens is because it is popularly supposed that only the most powerful telescopes and costly instruments of the observatory are capable of dealing with them. No greater mistake could be made. It does not require an instrument of any kind, nor much labor…..

pp 3

……………………………………………………………………………………………………………………………….

Author’s note: How refrseshing it is to read such words, living as we are in a world driven by the ugly sceptre of materialism. This author became aware of this as he spun his own elaborate web of materialism, acquiring ever more costly telescopes in the somewhat pretentious and utterly mistaken view that one must ‘pay to play’. Thankfully, he liberated himself from that deadly entanglement and now enjoys good but modest instruments in his pursuit of heavenly treasures.

Happy is he with his lot.

……………………………………………………………………………………………………………………………….

And with the aid of an opera-glass most interesting, gratifying, and, in some instances, scientifically valuable observations may be made in the heavens. I have more than once heard persons who knew nothing about the stars, and probably cared less, utter exclamations of surprise and delight when persuaded to look at certain parts of the sky with a good glass, and thereafter manifest an interest in astronomy of which they would formerly have believed themselves incapable.

pp 3-4

………………………………………………………………………………………………………………………………

It is at this juncture that Serviss begins to describe the simple optical accoutrement with which he weaves his inspiring allegory of the starry heavens; the opera-glass..

First a word  about the instrument to be used. Galileo made his famous discoveries with what was, in principle of construction, simply an opera glass. The form of telescope was afterward abandoned because very high magnifying powers could not be employed  with it, and the field of view was restricted. But, on account of its brilliant illumination of objects looked at, and its convenience of form, the opera glass is still a valuable and, in some respects, unrivalled instrument of observation.

pp 4

………………………………………………………………………………………………………………………………..

Author’s note: By the time Serviss penned these words, the Galilean telescope was long relegated to a mere historical curiosity, owing to the introduction of the achromatic doublet which offered far superior performance in terms of correction of chromatic aberration, coma and astigmatism, and allowing far higher magnifying powers to be employed. Binoculars had ‘evolved’ * considerably too , even in the case of the humble opera glass as he describes in the next few paragraphs of the introduction.

*More a case of intelligent design than ‘blind evolution’ surely?

………………………………………………………………………………………………………………………………..

In choosing an opera-glass, see first that the object-glasses are achromatic, although this caution is hardly necessary, for all modern opera-glasses, worthy of the name, are made with achromatic objectives. But there are great differences in the quality of the work. If a glass shows a colored fringe around a bright object, reject it. Let the diameter of the object-glasses, which are the lenses in the end furthest from the eye, be not less than an inch and a half. The magnifying power should be at least three or four diameters.

pp 4

……………………………………………………………………………………………………………………………….

Author’s note: A bona fide Galilean binocular would have consisted of a singlet convex objective and a singlet concave element as the eye lens. Yet, to a contemporary of Serviss, even at the extremely low powers delivered by such a device, chromatic aberration would be very objectionable and a very poor choice for the purposes of exploring the night sky.


Serviss continues by demonstrating to the reader a simple way to estimate the magnifying power of his/her opera-glass, by focusing on a brick wall and estimating “how many bricks seen by the naked eye are required to equal in thickness one brick seen through the glass.” This is fairly easily achieved by holding the opera-glass up to one eye whilst leaving the other free to image the unmagnified view. With a few second’s practice, one will be able to simultaneously image both the magnified and naked eye image, allowing one to make a good estimate of how much magnifying power the instrument is delivering.

The instrument used by the writer in making most of the observations for this book has object-glasses 1.6 inch in diameter , and magnifying power of about 3.6 times. See that the field of view given by the two barrels of the opera-glass coincide, or blend perfectly together. If one appears to partially overlap the other when looking at a distant object, the effect is very annoying. This fault arises from the barrels of the opera-glass being placed too far apart, so that their optical centers do not coincide with the centers of the observer’s eyes.

pp 4

…………………………………………………………………………………………………………………………………

Author’s note: For those who are interested in the development of the binocular through history, this resource was found to be quite authoratative. There is also an excellent youtube presentation of early binoculars available for viewing here and its follow-up here.

 

Overview of the author’s instrument: While rummaging through an antique shop in the picturesque old English market town of Kendall, in the Lake District, Cumbria, the author’s wife spotted a curious leather case inside of which was found a dusty Galilean binocular. Prizing it out of the case, this author briefly tested it by focusing on a clock-face about fifty yards distant. The image was fairly dim, owing to the amount of dust on the lenses, but to his delight, the individual barrels were set just about at the optimal interpupillary distance to bring both eyes into a single, circular light cone. The focusing mechanism was found to be a bit stiff and clunky but still adequate for general use, and the lenses were pristine enough for him to take the decision to purchase the instrument and its brown leather case, all for the princely sum of £7.

What follows here is a series of photographs of the instrument for the interested reader.

The dusty object glasses on the binocular.

 

The object glasses were measured to be 44mm in diameter, or 1.73 inches; which exceed Serviss’ minimum recommendations!

The instrument has a neat pair of retractable lens shades.

 

The instrument had a nice set of retractable lens shades. which could also double up as makeshift dew shields, which would ultimately come in handy during longer periods of field use.

The instruments were apparently manufactured in France.

 

The instrument has a “Made in France” inscription annexed to the left-hand barrel of the binocular but no manufacturer name was apparent. Curiously, the high-quality leather case accompanying the binocular is stamped “Made in England.” Somewhat puzzled, more inscriptions were found whilst racking the focus wheel outwards;

Racking the eyepieces outward uncovers a “War Office” stanp on one of the barrels.

 

When the eye lenses were racked outwards using the central focusing mechanism, the inscription “War Office” was found on the left barrell whilst the right barrel had ” Model” but no further information could be discerned.

With this information, it became somewhat clear that these were World War I binoculars. Since France had a technological edge over Britain in the production of high-quality optical glass up to the beginning of the 20th century, it was reasonably assumed that there was a division of labour amongst these war-time allies, with the leather case being manufactured in England. Consulting an online forum dedicated to the Great War, confirmed the author’s suspicion of the division of labour adopted by Britain and France during World War I. Ascribing a date of manufacture corresponding to World War I was further substantiated by the uncoated lenses used in the instrument. Anti-reflection coating technology was still a few decades ahead when these binoculars were being made.

The instrument is constructed mostly of metal parts but the lens shades and the central focusing wheel look as though they were made of the earliest commercial synthetic polymer, Bakelite, which was used extensively after 1909. Source here.

The author then went about dismantling the binocular to clean the optical surfaces. Intriguingly, the instrument was very easy to take apart so that lenses could be cleaned before use;

The innards of the Galilean binocular with a simple cylindrical light baffle placed immediately ahead of the eye lens.

 

Before and after cleaning the object glasses.

 

After carefully cleaning the lenses and putting it all back together again, and tightening up the screw which adjusts the tension on the focusing wheel, the author was delighted by how much esier it was to use, with brighter and more crisp images to boot. The instrument was now ready for field use.

Preliminary testing of the instrument  allowed this author to estimate its magnifying power at about 3.5x, just about the same as Serviss’ original instrument. Further tests on the night sky allowed him to estimate the field of view offered up by the instrument. Turning to the handle of the Ploughshare showed that the field glass was able to just about fit the stars Mizar and Alioth in the same field. Yet another test showed that the instrument was able to fit most of the main ‘V’ of the Hyades star cluster in Taurus, allowing him to estimate its field of view to be ~ 4.5 +/- 0.1 angular degrees; considerably less than a modern binocular but adequate enough to pursue this project.

There is no facility to adjust the interpupillary distance on this instrument or to adjust one ocular independently of the other, but this was not found to be an issue. Clearly, this was a no-frills instrument designed for basic use. There is no lavish overlaying of mother-of-pearl or some other ornate covering on this instrument like so many other beautiful Galilean binoculars dating from the late 19th century and early 20th century, but this is entirely in keeping with its intended use. And while it would be easy to get carried away, as it were, and imagine that the instrument was actually used on the battle front, this author was content with entertaining the idea that it might have only seen use by ordinary civilians.

In use, the ‘opera-glasses’ are not too lightweight. If they were, they would pick up the jitters from the author’s hand-holding all too easily but nor are they too heavy to render prolonged field use a chore. There is a lot to be said for field glasses that are ‘just right.’

The author was over the Moon with his purchase. This was a genuine example of an instrument described by Serviss, allowing this author to authenticate the literary descriptions proferred in the work. This is an important issue going forward; to really experience the visual sensations of a Victorian amateur, one ideally has to use an instrument from the same period, or as near as can be. There is little point in claiming that one has the heart of a Victorian observer without also using instruments that would have been right at home in the same period. Doing it any other way is little more than cheating lol!

Now we are ready to enjoy the night sky as Serviss may have viewed it through his simple opera-glasses. Since each chapter of the book can be enjoyed independently of the others, for convenience, this author will commence with an exploration of the autumnal (fall) night sky (Chapter III) since this is the season in which this blog was first initiated.

…………………………………………………………………………………………………………………………..

Chapter III The Stars of Autumn

Covering pages 60 through 88

It is certainly true that a contemplation of the unthinkable vastness of the universe, in the midst of which we dwell upon a speck illuminated by a spark, is calculated to make all terrestrial affairs appear contemptibly insignificant. We can not wonder that men for ages regarded the earth as the center, and the heavens with their lights as tributary to it, for to have thought otherwise, in those times, would have been to see things from the point of view of a superior intelligence. It has taken a vast amount of experience and knowledge to convince men of the parvitude of themselves and their belongings. So, in all ages, they have applied a terrestrial measure to the universe, and imagined they could behold human affairs reflected in the heavens and human interests setting the gods together by the ears. This is clearly shown in the story of the constellations.

pp 61

Garrett Serviss, writing as he was at the end of the 19th century, held fairly typical ideas for his time regarding the plurality of worlds. He, like so many of his contemporaries, believed the vastness of the starry heaven pointed to humanity’s mediocrity (‘parvitude’) in the scheme of things. Although he does not explicitly express it, he probably believed life was commonplace in the Universe. Back then, scientists were totally ignorant of the sheer complexity of even the simplest living cell- equivalent to that observed in the largest of human cities –  and so was not in a position to see the incredible unlikelihood of something as complex as a living thing coming into being without the mediation of an intelligent agency. Today, the consensus appears to be shifting considerably from this scientifically naive view of the ubiquity of life on other worlds, especially now since a great deal more scientific evidence has come to the fore strongly suggesting that life on Earth did not evolve in any Darwinian sense. As this author has explained elsewhere, Serviss’ view of humanity as “contemptibly insignificant” is demonstrably false. We are, almost certainly, the only sentient creatures ever to have been created aside from the angels (the host of heaven).

The tremendous truth that on a starry night we look, in every direction, into an almost endless vista of suns beyond suns and system upon systems, was too overwhelming for comprehension  by the inventors of the constellations. So they assumed themselves, like imaginative children, as they were, by tracing the outlines of men and beasts formed by those pretty lights , the stars. They turned the starry heavens into a scroll filled with pictured stories of mythology. Four of the constellations with which we are going to deal in this chapter are particualrly interesting on this account. ….The four constellations to which I refer bear the names of Andromeda, Perseus, Cassiopeia and Cepheus, and are sometimes called, collectively, the Royal Family.

pp 62-63.

……………………………………………………………………………………………………………………………..

Author’s note: The constellations that Serviss has chosen to discuss at length are prominent in the skies of early autumn and are especially well placed at the latitude this author observes from:- 56 degrees north. Indeed, they are better placed in his skies than they were for Serviss, who presumably would have observed from mid-northern latitudes and afford a wealth of objects that can be studied with the opera-glass.

……………………………………………………………………………………………………………………………….

Maps 14 and 15, presented on page 62 and 64, respectively, highlight the main constellations visible at mid-northern latitudes throughout September and October. Only the far southerly constellations are out of reach of the author’s gaze. Before discussing the Royal Family, Serviss enters into a brief but fascinating discussion on the southerly constellation of Capricornus, the most diminutive constellation of the zodiac,with a particular mention to both Alpha and Beta Capricorni. He writes:

The stars Alpha, called Giedi, and Beta, called Dabih, will be recognized, and a keen eye will perceive that Alpha really consists of two stars. They are about six minutes of arc apart, and are of the third and the fourth magnitude, respectively.These stars, which to the naked eye  appear almost blended into one, really have no physical connection to each other, and are slowly drifting apart.

pp 65

 

Serviss then discusses the star Beta Capricorni.:

The star Beta, or dabih, is also a double star. The companion is of a beautiful blue colour, generally described as “sky blue.” Is is of the seventh magnitude , while the larger is of  magnitude three and a half. The latter is golden yellow. The blue of the small star can be seen with either an opera- or field glass.

pp 65-6

……………………………………………………………………………………………………………………………….

Author’s note: This author has always referred to Alpha Capricorni as ‘Algedi’, which in Arabic means ‘little kid.’ Serviss, on the other hand, chooses to use a variation of this appellation; ‘Giedi.’ Being very low in the skies of central Scotland, the duplicitous nature of this star is exceedingly difficult to discern with the naked eye, even on the steadiest of nights. Indeed, they are just about half the separation of Mizar & Alcor in the handle of the Ploughshare, for comparison. The opera-glass however, makes light work of showing two yellow suns, the brighter being +3.6 (Alpha-1) and the fainter +4.3 (Alpha-2). This is a wonderfully complex system for double- and mutiple- star enthusiasts located at more favourable latitudes further south, where each of these stars is found to be double in a small telescope. Alpha 1 & 2 are known as an optical double, as the stars are located at greatly different distances; 106 and 560 light years, respectively, and by chance alone are located along our line of sight

In the same field about 2.5 degrees further south, you will be able to make out the golden tint of third magnitude Dabih (Beta Capricorni). In modern 10 x 50s, it too is revealed to be a double star, the companion being of the sixth magnitude of glory. Alas, the low power of the opera-glass, as well as the large brightness differential between the two, not to mention its low elevation above the horizon, makes this very difficult, if well nigh impossible to discern. What can you make out?

………………………………………………………………………………………………………………………………

On page 65, Serviss also mentions a curious thought entertained by Sir John Herschel regarding faint companions to bright stars:

A suggestion by Sir John Herschel, concerning one of these faint companions, that it shines by reflected light, adds to the interest, for if the suggestion is well founded the little star must, of course, be actually a planet, and granting that, then some of the other faint points of light seen there are probably planets too.

pp 65

This is clearly an erroneous conclusion, as Serviss points out:

It must be said that the probabilities are against Herschel’s suggestion. The faint stars more likely shine by their own light.

pp 65

This just goes to show that even great astronomers can be dead wrong! Having said that, it is possible to see Earth-sized objects at stellar distances. Take the famous ‘pup,’ the faint companion to the Dog Star, Sirius B, for example, which can be seen in a 3-inch telescope in the current epoch. The companion, a white dwarf star, is incredibly small and dense but highly luminous!

 

With the most powerful glass at your disposal, sweep from the star Zeta eastward a distance somewhat greater than that separating Alpha and Beta, and you will find a fifth-magnitude star beside a little nebulous spot. This is the cluster known as 30 M, one of those sun-swarms that overhwelm the mind of the contemplative observer with astonishment, and especially remarkable in this case for the apparent vacancy of the heavens immediately surrounding the cluster….

pp 66

………………………………………………………………………………………………………………………………..

Author’s note: Throughout much of the 19th- and early 20th centuries, the Messier objects were denoted by a number followed by the capital letter, ‘M,’ in contrast to today, where the letter ‘M’ precedes the number. M30 (a bright, 7th magnitude globular cluster located some 26,000 light years away) can indeed be picked up as a distinctly non-stellar blob in an opera-glass but its full glory can only be appreciated with a modest sized telescope and high magnifications. The fifth magnitude star Serviss is likely referring to is 41 Capricorni.

……………………………………………………………………………………………………………………………

Serviss then moves from Capricorn to Aquarius, situated to the northeast of the latter and more accessible to observers located at high northerly latitudes. Serviss launches into an interesting discussion of the mythology related to the celestial Water-Bearer, both in ancient cultures and in more recent Arabic lore.

The star Tau is double and presents a beautiful contrast of color, one star being white and the other reddish orange- two solar systems, it may be, apparently neighbors as seen from the earth, in one of which daylight is white and in the other red!

pp 68

Tau Aquarii is indeed a beautiful and easy sight to behold in the opera-glass, with both stars being separated by about 0.65 angular degrees. Serviss’ fecund imagination goes to work here as he rightly considers the colour these stars cast on the landscape of hypothetical planets that might exist there.

Serviss then discusses the fascinating 8th magnitude object in Aquarius that we know today as the Saturn Nebula (NGC 7009), an appellation first bestowed upon it by the Third Earl of Rosse (Birr, Ireland).

Point a good glass upon the star marked Nu, and you will see, somewhat less than a degree and a half to the west of it, what appears to be a faint star of between the seventh and eighth magnitudes. You will have to look sharp to see it. It is with your mind’s eye that you must gaze, in order to perceive the wonder here hidden in the depths of space. The faint speck is the nebula, unrivalled for interest by many of the larger and more conspicuous objects of that kind. Lord Rosse’s great telescope has shown that in form it resembles the planet Saturn; in other words, that it consists apparently of a ball surrounded by a ring……..If Laplace’s nebular hypothesis, or any of the modifications, represents the process of formation of a solar system, then we may fairly conclude that such a process is now actually in operation  in this nebula in Aquarius, where a vast ring of nebulous matter appears to have separated off from the spherical mass within it.

pp 68-9

…………………………………………………………………………………………………………………………….

Author’s note: The visualisation of the Saturn Nebula with the opera glass is certainly possible but it only presents as a very faint 8th magnitude ‘field star’. Serviss, writing at the time when modern astrophysics was in its infancy, had no idea that what he was describing was not, in fact, a solar system in formation, but one rather that was in the process of dying. The Saturn Nebula is a prominent planetary nebula, a geriatric star in its final death throes, as it sheds its outer atmosphere to the great, cold dark of interstellar space.

………………………………………………………………………………………………………………………………

On page 69, Serviss invites us to examine the star Delta Aquarii with the opera glass. At magnitude + 3.3, it shines with a blue-white hue. It is here, so Serviss informs us, that Tobias Mayer ” narrowly escaped making a discovery that would have anticipated that which a quarter century later made the name of Sir William Herschel world-renowned.” In 1756, the planet Uranus passed very close to this star but it moved so slowly that it escaped his notice.

………………………………………………………………………………………………………………………………..

Author’s note: The story of Uranus is really the story of ‘near misses.’ The historical archives reveal many such ‘nearly never made it’ sightings of the 7th planet orbiting the Sun. In fact, Galileo himself almost certainly sighted Uranus in the early 17th century, but did not realise its significance.

………………………………………………………………………………………………………………………………..

Above Aquarius you will find the the constellation of Pegasus. It is conspicuously marked by four stars of about the second magnitude, which shine at the corners of a large square, called the Great Square of Pegasus. This figure is some fiften degrees square, and at once attracts the eye, there being few stars visisble within the quadrilateral, and no large ones in the immediate neighborhood to distract attention from it

pp 69

……………………………………………………………………………………………………………………………..

Author’s note: The Great Square of Pegasus is all the more remarkable for its great paucity of bright stars. Indeed, this is precisely the reason why it stands out so prominently in autumn skies. How many stars can you make out within the body of the square? From my reasonably dark site I can make out about, this author can make out maybe a half dozen stars ranging in magnitide from +4 to +5.5, most prominent of which are Upsilon, Tau, Psi and Phi, which vary in glory from +4.4 to +5.1. Additionally, when the constellation is higher up in the sky, and with good transparency and no Moon, additional members can be made out with some concentration; 71 Pegasi ( magniude +5.4)  can be glimpsed near the centre of the square and 75 Pegasi (+5.5)  just a few degrees further south. 85 Pegasi might also be glimpsed just above Algenib (Gamma Andromedae) near the border with Pisces.  Many more are possible from the darkest skies, however. Indeed, counting the number of stars within the Great Square that are visible to the naked eye remains a good test of how dark and transparent your skies are. However, even a thin veneer of haze will all but extinguish the fainter stars visible to the naked eye on the best nights.

……………………………………………………………………………………………………………………………….

Although Pegasus presents a striking appearance to the unassisted eye on account of its great square, it contains little to attract the observer with an opera-glass. It will prove interesting to sweep with the glass carefully over the space within the square , which is comparitively barren to the naked eye but in which many small stars  will be revealed, of whose exstence the naked-eye observer would be unaware. The star marked Pi is an interesting double, which can be separated by a good eye without artificial aid, and which, with an opera-glass, presents a fine appearance.

pp 70

Sweeping with the opera-glass within the confines of the Great Square is still a worthwhile endeavour, where many fainter stars of magnitude 7 and 8 come into view. Though Serviss does mention it, the opera-glass is just the perfect optical accoutrement to properly discern the colour differences between the stars marking the vertices of the Great Square. To this author’s eye, only first magnitude stars clearly reveal their colours, but with the opera-glass you’ll be able to make out that Markab (Alpha Pegasi) and Algenib (Gamma) are lovely blue-white in hue, whilst Scheat (Beta) has, in comparison, a soft ruddy colour. Another beautiful target is Enif (Epsilon), located in the south-western edge of the Flying Horse, near the border with the diminutive constellations of Delphinus and  Equuleus. Owing to its rather irregular variability, it can sometimes manifest as the brightest star in Pegasus, outshining all the others in glory, with its fetching orange complexion. Though a little beyond the low powers offered by the opera-glass, a larger field glass should also reveal Enif’s wide and faint (magnitude 8.6) companion.

It is somewhat surprising that Serviss fails to mention M 15, a bright, sixth magnitude globular cluster just off to the northwest of Enif. Appearing as a fuzzy star in the opera-glass, averted vision should allow you to see it swell to nearly twice the size it appears using direct vision.

Finally, another target worth seeking out is the fifth magnitude star, 51 Pegasi, a sun-like (G class) star located roughly midway between Alpha and Beta Pegasi. Situated just 50 light years from the solar system, 51 Pegasi was shown to have a planet about half the mass of Jupiter circling its parent star just a few million miles from its fiery surface. Fascinated as he was in the ‘plurality of worlds,’ were he alive today, Serviss would most certainly have waxed lyrical about this star system!

Serviss moves from Pegasus into Cetus, the Celestial Whale, and almost immediately launches into an interesting discussion on its most famous luminary; Mira (Omicron Ceti):

By far the most interesting object in Cetus is the star Mira. This is a famous variable- a sun that sometimes shines a thousand-fold more brilliantly than at others! It changes from the second magnitude to the ninth or tenth, its period from maximum to minimum being about eleven months. During about five months of that time it is completely invisible to the naked eye; then it begins to appear again, slowly increasing in brightness for some three months, until it sjines as a star of the second magnitude, being then as bright as, if not brighter than, the most brilliant stars in the constellation. It retains this brilliance for about two weeks, and then begins to fade again, and, within three months, once more disappears.

pp 71-72

………………………………………………………………………………………………………………………………..

Author’s note: Mira is a wonderful subject for the opera glass. It was discovered to be variable by the Dutch astronomer, David Fabricius in 1596, barely a decade before the telescope first made its mark on European civilization. At its brightest, it is a handsome ruddy colour in the opera glass and, thanks to a number of suitable ‘reference stars’ of fixed brightness in its vicinity, which vary in glory from the 6th to the 8th magnitudes, they can be used to monitor its changing luminosity over the weeks and months.It’s period is 332 days.

……………………………………………………………………………………………………………………………..

Serviss explains that Mira is somewhat irregular in its maximum brightness though. For example, he informs us that in 1779 it shone with a brilliance more reminiscent of a first magnitude star. Acknowledging the Sun’s minor variability, Serviss supposes that the nature of its variability is attributed to much more prominent star spots (analogous to the sunpots on our own star) on its fiery surface:

Knowing that our Sun is a variable star-though variable only to a slight degree, its variability being due to the spots that appear upon its surface in a period of about eleven years- we possess some light that may be cast upon the mystery of Mira’s variations. It seems not improbable that, in the case of Mira, the surface of the star at the maximum of spottedness is covered to an enormously greater extent than occurs during our own sun-spot maxima, so that the light of the star, instead of being merelty dimmed to an almost imperceptibe extent , as with our sun, is almost blotted out.

pp 72

………………………………………………………………………………………………………………………………..

 

Author’s note: Serviss was wrong in his explanation of Mira’s extraordinary variability. Its variability is actually caused by its sinusoidal expansion and contraction, from 400 to 500 times the diameter of our own Sun. It is this change in radius and temperature that gives rise to its variability. Mira is at the latest stage of its evolutionary journey and, as a result, is shedding its outer atmosphere to interstellar space.

……………………………………………………………………………………………………………………………….

Serviss wonders whether the antics of Mira might reflect the fate of our own star in the aeons to come:

We might even go so far as to say that possibly Mira presents to us an example of what our sun will be in the course of time, as the dead an barren moon shows us, as in a magician’s glass, the approaching fate of the earth. Fortunately, human life is a mere span in comparison with the aeons of cosmic existence, and so we need have no fear that either we or our descendants  for thousands of generations shall have to play the tragic role of Cambell’s ” Last Man,” an endeavor to keep up a stout heart amid the crash of time by meanly boasting to the perishing sun, whose rays have nurtured us, that, though his proud race has ended, we have confident anticipations of immortality. I trust that when man makes his exit from this terrestrial stage, it will not be in the contemptible act of kicking a fallen benefactor.

pp 73

………………………………………………………………………………………………………………………………

Author’s note: Like human beings, stars are at their most unstable when very young and very old. In middle age, they enjoy much greater stability. Our Sun, now in its stable mid-life, is the least variable star known to astronomical science. Greater variability would be very dangerous for the life that teems on this planet. Is it a coincidence that humankind arose on the scene during this period of maximum solar stability? I think not. This is the best possible time to launch a global civilisation, where billions of human beings can enjoy the benefits of great scientific advances that make our lives comfortable. It was planned that way and can only last for a definite amount of time before things go downhill for one and all. The Biblical authors affirm that the Earth is not our ultimate home;

For here we do not have a lasting city, but we are seeking the city that is to come.

Hebrews 13:14

…………………………………………………………………………………………………………………………….

The text on autumn skies moves from Cetus into Pisces, a large and sprawling constellation snaking its way from ‘under’ the square of Pegasus (as seen from the northern hemisphere), northeastwards where it borders with Andromeda, the Chained Princess. Beginning with some mythology associated with the constellation, Serviss then suggests we sweep our opera glasses from northeast to southwest and examine the many delightful stars that fall into the field of view:

You will find it very interesting to take your glass and , beginning with the attractive little group in the Northern Fish, follow the windings of the ribbon, with its wealth of tiny stars, to the Western Fish. When you have arrived at that point, sweep well over the sky in that neighborhood, and particularly around and under the stars Iota, Theta, Lambda and Kappa. If you are using a powerful glass, you will be surprised and delighted by what you see.

pp 74

……………………………………………………………………………………………………………………………….

Author’s note: The most distinctive feature of this constellaton is the attractive loop of seven stars situated at its southwestern edge known as the Circlet. The field of view offered up by the opera glass used by this author is not large enough to encompass them all, but a modern, wide-angle binocular can certainly do so. Centre Kappa and Lambda Piscium in the field. Just a short distance south of these stars lies the spot where the Sun crosses the celestial equator, heralding the arrival of Spring in the northern hemisphere. While you’re there, it’s worth checking out a pretty little asterism known as Alessi J23407+0757 situated just over two degrees north of Iota Piscium. Appearing quite smudgy in the opera glass owing to its small image scale, it makes a delightful telescopic sight consisting of about half a dozen stars.

………………………………………………………………………………………………………………………………..

Serviss leaves Pisces and then moves into Aries, the Ram, sandwiched between Taurus and Andromeda, where he invites us to explore its two brightest luminaries, set about four degrees apart; Alpha Arietis(Hamal) and Beta Arietis (Sheratan), both of the second magnitude. They present an interesting case of colour contrast, with Hamal shining with a soft orange hue while Sheratan is revealed as blue-white in the opera glass. On page 75, Serviss gives mention to Gamma Arietis(Mesarthim). He writes:

Gamma Arietis, is interesting as it was the first telescopic double star ever discovered. Its duplicity was detected by Dr. Hooke while watching the passage of a comet near the star in 1664.

pp 75

……………………………………………………………………………………………………………………………….

Author’s note: The opera glass will pick up a faint star ( 7 Arietis) just west of Mesarthim, but this is not the duplicity Serviss speaks of. In a small telescope using low power, magnitude 3.9 Mesarthim is seen to be composed of two stars, both white and of nearly equal magnitude; 4.6 and 4.7.

…………………………………………………………………………………………………………………………….

At the bottom of page 75, Serviss returns to one of the themes he raises earlier in the chapter, by finally introducing the constellations that comprise the ‘Royal Family,’ consisting of Perseus, Andromeda and Cassiopeia, all featured on Map 17 on page 77 of the text. After discussing their interesting mythology, he finally begins the astronomical discussion of these constellations on page 79, where he notes the great riches to be found within their confines;

The starry riches of these constellations are well matched with their high mythological repute. Lying in and near the Milky-Way, they are particularly interesting to the observer with an opera glass. Besides, they include several of the most celebrated wonders of the firmament.

pp 79

Serviss begins with Andromeda and its greatest attraction to the possessor of an opera glass; the Great Nebula (M 31):

In searching for picturesque objects in Andromeda, begin with Alpheratz and the groups forming the hands. Below the girdle will be seen a rather remarkable arrangement of small stars in the mounth of the Northern Fish. Now follow up the line of the girdle to the star Nu. If your glass has a pretty wide field, your eye will immediately catch the glimmer of the Great Nebula in Andromeda in the same field with the star.

 pp 79-80

………………………………………………………………………………………………………………………………

Author’s note: The “Great Nebula” in Andromeda is indeed a fine sight in the author’s opera glass, where its central bulge and extended spiral arms look rather like two fried eggs set back to back.

………………………………………………………………………………………………………………………………

He continues on page 80 to inform us that this deep sky object  is the “oldest or earliest discovered of the nebulae, and with the exception of that in Orion, is the grandest visible in this hemisphere.”

An illustration of what the Andromeda Nebula looks like in an opera glass is provided on page 80, together with an early reference to averted vision:

By turning the eyes aside, the nebula can be seen, extended as a faint, whispy light, much elongated on either side of the brighter nucleus.

pp 80

………………………………………………………………………………………………………………………………..

Author’s note:  We have a tendency today to think that many of the more advanced skills employed by visual observers are essentially modern developments. And yet Serviss clearly reveals to us that the eminently useful activity of using averted vision (using the night-sensitive rod cells situated either side of the fovea)  was known and used to good effect at the end of the 19th century.

………………………………………………………………………………………………………………………………..

On page 80 through 81, Serviss described the curious phenomenon of a nova seen superimposed on the Andromeda Nebula in 1885, which flared up suddenly and faded back to invisibility in the course of just a few months. He does not however, reveal the interesting story of its discovery.

……………………………………………………………………………………………………………………………

Author’s note: What Serviss is almost certainly referring to is SN 1885, which was first chanced upon by the French  astronomer; Ludovic Gully, on the evening of August 17 1885 from Rouen, France, during a public stargazing event. Intriguingly, Gully dismissed the event as an artifact of ineffective baffling of his telescope from scattered moonlight and so did not follow it up and report it to the broader astronomical community. Just two evenings later, it was apparently seen by the Irish amateur astronomer, Isaac Ward(1834-1916), based in Belfast, who described its appearance as ruddy and with an estimated magntude brightness of + 7.

The Northern Irish astronomer, Isaac Ward (1834-1916), seen here sat beside the 11cm achromatic refractor he allegedly used to observe SN 1885A. Image credit: Wiki Commons.

 

SN 1885A was picked up by Ernst Hartwig, based at Dorpat (Tartu) Observatory, Estonia, on the evening of August 20 1885, when its existence was finally communicated to the international community. Despite attempts by both Gully and Ward to claim it as their own, the discovery of ‘S Andromedae’  (the common name soon bestowed upon it), was credited to Hartwig. SN 1885A was a supernova, which reached its maximum brightness of +5.85 on August 21 1885 after which it faded back to magnitude 14 a year later. More historical information regarding the object can be viewed here. SN 1885A retains the distinction of being the only supernova event to have been viewed in the Andromeda Galaxy to this day.

………………………………………………………………………………………………………………………………..

That Serviss was largely ignorant of the true nature of SN 1885A  is no surprise. Astronomers knew very little in these early days considering how massive stars end their lives. What is more, we also gain a glimpse of how small the cosmos was thought to be at the end of the 19th century. Concerning the ‘nova’ in Andromeda he writes;

Although it appeared to be beside the bright nucleus of the nebula, it is likely that it was really hundreds or thousands of millions of miles either this side or the other side of it.

pp 80-81.

On page 81, Serviss encourages users of the opera glass to conduct sweeps through Andromeda eastwards towards Cassiopeia and Perseus. As we do so, the richness of star fields increases dramatically as our portal on the heavens rejoins the meandering river of stars that is the Miky Way. On page 82, Serviss pauses to consider Gamma Andromedae, which presents in  a comely golden hue in the opera glass. He also points out that this is the spot in the sky that demarks the radiant of the Biela (Andromedid) meteor shower, so called after the astronomer who first discovered a short period comet that graced the inner solar during the mid 19th century.

………………………………………………………………………………………………………………………………

Author’s note: Serviss was also a keen telescopist and indeed published a splendid book (mentioned earlier in passing) dedicated to the sights within reach of a small telescope. What’s more, this author imagines him using both the opera glass and the telescope profitably to bring the many treasures of the northern sky within reach of his eyes. Serviss alerts us to the beautiful colour contrast triple system, Gamma Andromedae (pp 82), which is a delightful sight in a telescope employing moderate powers. Before leaving Andromeda, be sure to check out the terrific binocular triple, Nu Andromedae. Observers with the keenest eyesight should try their hand at seeing this triple system with the naked eye.

……………………………………………………………………………………………………………………………….

Next let us turn to Perseus. The bending row of stars marking the center of this constellation  is very striking and brilliant. The brightest star in the constellation is Alpha, or Algenib, in the center of the row. The head of Perseus is toward Cassiopeia, and in his left hand he grasps the head of Medusa, which hangs down in such a way that its principal star, or Algol, forms a right angle with Algenib and Almach in Andromeda.

pp 83.

Perseus, the classical Hero, presents some of the most spectacular sights to the user of an opera glass. The opulent splashing of stars around Alpha Persei (Algenib) is presented in the star map on page 84 of the text and cries out for exploration. After discussing the Demon Star, Algol, Serviss turns his attention to the region of sky around Algenib:

Turn now to the bright star Algenib, or Alpha Persei. You will find with the glass an exceedingly attractive spectacle there. In my note-book I find this entry, made while sweeping over Perseus for materials for this chapter: “The field about Alpha is one of the finest in the sky for an opera glass. Stars conspicuously ranged in curving lines and streams. A host follows Alpha from the east and south.” The picture on page 84 will give the reader some notion of the exceeding beauty of this field of stars, and of the singular manner in which they are grouped, as it were, behind their leader. A field glass increases the beauty of the scene.

pp 85-6.

…………………………………………………………………………………………………………………………..

Author’s note: The reader will note that Serviss refers to Alpha Persei as ‘Algenib’ rather than the more familiar name of ‘Mirfak’ used by astronomers today.

Serviss took notes while observing; an essential activity for any serious observer!

In October, Perseus rides very high in the sky at the author’s location, making it especially well placed for observation. The stream of stars around Mirfak referred to by Servis is known today as the Alpha Persei moving cluster (or association). Centring the opera glass on Mirfak reveals about a dozen stars of magnitue 6 or greater within a two degree radius anda few more ‘outliers’ can be picked up by virtue of the glass’ larger field of view (~4.5 degrees). This remarkable clustering of star light presents one of the most spectacular sights in all the northern heavens using a field glass. Indeed, so large and sprawling is this cluster that it is somewhat lost in the field of view offered up by even the smallest rich field ‘scope!

Modern binoculars have come an awful long way since Serviss penned his words. Today, one can obtain very decent binoculars for a modest price offering much higher contrast, magnification and field of view than anything Serviss could have dreamed of! The author’s 8 x 42 binocular, for example, samples a field fully 7.3 degrees wide, and with a higher magnification can pull out considerably fainter members than any early 20th century field glass. This instrument makes observing through the old field glass more like looking through a straw than anything else!

Isn’t modern technology wonderful!

This author considers it a great blessing that he is able to use such a wonderful optical instrument from the 21st century!

Intelligent development: a modern binocular (right) exceeds the power of old opera glasses by a huge margin.

 

Observing the Alpha Persei Association with a modern binocular cannot fail to introduce a deep sense of awe concerning the vast beauty of the heavens!

………………………………………………………………………………………………………………………………..

The reader will find a starry cluster marked on Map 17 as the “Great Cluster.” This object can be easily detected by the naked eye, resembling a whisp of luminous cloud. It marks the hand in which Perseus clasps his diamond sword, and, with the aid of a telescope of medium power, it is one of the most marvelously beautiful objects in the sky- a double swarm of stars, bright enough to be clearly distinguished from one another, and yet so numerous as to dazzle the eye with their lively beams.

pp 86

Serviss is referring to the famous Double Cluster (Caldwell 14) located about mid-way between Perseus and Cassiopeia. This is undoubtedly one of the crown jewels in all the heavens, and while it can be seen as a foggy whisp with the naked eye, any optical aid makes it look immesaurably better. Serviss writes;

An opera glass does not possess sufficient power ” to resolve” this cluster, but it gives a startling suggestion of its half-hidden magnificence….”

pp 86

……………………………………………………………………………………………………………………………

Author’s note: The view of the Double Cluster is considerably improved with an opera glass, but it is much better seen with decent aperture telescopes. This author observes it pretty much routinely for much of the year and finds that the view becomes better and better the larger the telescope is employed. There will be a natural limit though, as the largest telescopes will have a field of view that becomes too small to sample the full glory of this celebrated deep sky object. The best view he has had in recent years is through a 12″ f/5 Newtonian reflector using a 34mm  wide angle eyepiece serving up a power of 45x in a 1.5 degree true field, but a very close second is at 59x in the same telescope in a one degree field.The latter is slightly less favoured, as it restricts some of the hinterland to these clusters from being comfortably observed.

……………………………………………………………………………………………………………………………….

Nearby, about mid-way between Algol and the lovely golden Gamma Andromedae (Almach), the opera glass makes light work of picking up the open cluster also mentioned by Serviss as’ 34 M’. When high in the sky, during October and November, one can make out perhaps a half dozen of its brightest stellar members and perhaps twice that with a 10 x 50 binocular. Telescopically, M 34 is reasonably rewarding, presenting a rich scattering of white, yellow and orange stars at moderate medium powers.

Serviss next invites us to explore the rich stellar archipelagos of Cassiopeia, easily made out as ‘wonky W’, as this author affectionately refers to it. Serviss writes:

Here the Milky-Way is so rich that the observer hardly needs any guidance, he is sure to stumble upon interesting sights for himself. The brightest stars are generally represented as indicating the outlines of the chair or throne in which the queen sits, the star Zeta being in her head. Look at Zeta with a good, field glass, and you will see a singular and brilliant array of stars near it in a broken half circle, which may suggest the notion of a crown.

pp 86-87.

From here, Serviss invites the reader to visit a locus very near the star Kappa Cassiopeiae, denoted by a very small circle on Map 17 ( page 76). A number is assigned to this locus:- 1572. Intriguinginly, this little spot makes Serviss’ mind races:

This shows the spot where the famous temporary star, which has of late been frequently referred to as the “Star Of Bethlehem,” appeared. It was seen in 1572 , and carefully observed by the famous astronomer Tycho Brahe. It seems to have suddenly burst forth with a brilliance that outshone every other star in the heavens, not excepting Sirius itself. But its supremacy was short-lived. In a few months it had sunk to the second magnitude. It continued to grow fainter, exhibiting some remarkable changes of color in the meantime, and in less than a year and half it disappeared.

pp 87.

Serviss goes on to say that in 1264 and 945 AD, similar outbursts of brightness were recorded at the same location in the heavens. Serviss seems to suggests that a legend grew up around this ‘nova’  and that it could also be the location of a star that burst forth during the time of the birth of Christ. Yet, Serviss exercises caution when entertaining such legends;

In short, there are two many suppositions and assumptions involved to allow any credence being given to the theory of the periodicity of Tycho’s wonderful star. At the same time, nobody can say it is impossible that the star should appear again, and so it may be interesting to the reader to know where to look for it.

pp 87-88.

………………………………………………………………………………………………………………………………

Author’s note: Serviss is justified in expressing caution in attributing the Star of Bethlehem to Tycho’s Star. As a Bible believing Christian, the ‘Star’ was undoubtedly a real phenomenon, as were Christ’s teachings, miracles, death and resurrection. Best to leave it at that! No harm done in visiting this spot in Cepheus from time to time!

………………………………………………………………………………………………………………………………..

On page 88, Serviss brings his tour of the autumn sky to an end by briefly considering a couple of stars in Cepheus; particularly Herschel’s Garnet Star, Mu Cephei, the deep sanguine hues of which will delight the user of an opera glass, as well as the wonderful Delta Cephei, a celebrated double and variable star, the components of which are quite widely spaced. Serviss writes:

With a good eye, a steady hand and a clear glass, magnifying not less than six diameters, you can separate them, and catch the contrasted tints of their light.

pp 88

……………………………………………………………………………………………………………………………….

Author’s note: The separation of Delta Cephei A & B has hardly changed since Serviss penned his words. Today they are separated by 41,” precisely the number proffered by Serviss at the end of the 19th century (see page 88). Try as he may, this author has not been able to prize the components apart using his low power opera glass. Even his steadily-held 8 x 42 failed the test. He has however found it no trouble to separate the components using a power of about 15x in a 80mm shorttube achromatic telescope on a steady night with good transparency. But one can easily monitor the changing brightness of the Cepheid variable (Delta Cephei A) with an opera glass, which gradually fades from magnitude 3.5 back to 4.4 over a period of about five days and 9 hours.

……………………………………………………………………………………………………………………………….

Chapter IV  The Stars of Winter

Covering pages 89 through 117.

I have never beheld the first indications of the rising of Orion without a peculiar feeling of awakened expectation, like that of one who sees the curtain rise upon a drama of absorbing interest. And certainly the magnificent company of the winter constellations, of which Orion is the chief, make their entrance upon the scene in a manner that may be described as almsot dramatic. First in the east come the world-renowned Pleiades. About the same time Capella, one of the most beautiful of stars, is seen flashing above the north-eastern horizon. These are the sparkiling ushers to the coming spectacle. In an hour the fiery gleam of Aldebaran appears at the edge of the dome below the Pleiades, a star noticeable among a thousand for its color alone, besides being one of the brightest of the heavenly host. The observer familiar with the constellations knows, when he sees this red star which marks the eye of the angry bull, Taurus, that just behind the horizon stands Orion with starry shield and upraised club to meet the charge of his gigantic enemy. With Aldebaran rises the beautiful V-shaped group of the Hyades.

pp 89

Despite being separated by over a century of time, Serviss’ opening lines in this chapter covering the winter sky, immediately resonate with this author, as though he were standing right beside him on a clear and dark winter evening. Orion is indeed the great herald of the hyemal heavens, its august form dominating the meridian from well after midnight in early December but arriving increasingly earlier as the winter progresses.

As well as hosting a riot of bright stars crying out for observation with an opera glass, Orion’s brilliant luminaries – Rigel and Betelgeuse – are accompanied by a host of brilliant suns that decorate the heavens: Sirius and Procyon dominate the sky low in the southeast, and higher up, fiery red Aldebaran in Taurus, and creamy yellow Capella, the jewel of Auriga. The heavenly twins, Castor & Pollux boldly announce the arrival of Gemini, and over in the west at sunset, the white and blue-white luminaries of summer still make their presence felt; Altair in Aqulia, Deneb in Cygnus and Vega corruscating wildly in the denser air at lower altitude.

This rich assortment of bright stars create the unmistakable impression that the winter sky is darker than at other times of the year. And, indeed, there is more than a grain of truth to this assertion; for it is at this time of year that our gaze begins to carry us away from the extremely bright centre of our galaxy, and faces the Perseus spiral arm of our Milky Way.

Of such an array of bright winter stars, Serviss believes it is unrivalled in all the heavens;

The heavens contain no other naked-eye view comparable with this great array, not even the glorious celestial region where the Southern Cross shines supreme, being equal to it in splendor.

pp 91.

 

From his observing site in the populous borough of Brooklyn, Serviss provides a historically interesting titbit regarding the encroach of light pollution in urban settings:

To comprehend the real glories of the celestial sphere in the depth of winter, one should spend a few clear nights in the rural districts of New York and new England.

pp 91

……………………………………………………………………………………………………………………

Author’s note: Clearly, by the 1890s, light pollution was becoming a signifiant issue for urban dwellers in comparison to the darker skies of earlier times.

……………………………………………………………………………………………………………………..

The reader is referred to maps 18 and 19  feaured on pages 92 and 93 of the text. Serviss begins with the large and winding constellation Eridanus the celestial River, so named by the ancient Greeks, though the Egyptians intended that it should really represent the majestic Nile. Only the northernmost stars are visible from the author’s far northerly latitude, where the opera glass sweeps up a good assortment of its stars including Beta, which forms part of the ‘foot’ or Orion near Rigel, but also the roughly linear array of stars comprising Gamma, Pi, Epsilon and Delta Eridani.

Fluvius (Latin for ‘river’) Eridanus, as it is affectionately known to this author, snakes its way over a prodigious 100 degrees of sky, as far south as the bright blue-white star, Achernar, some 57 degrees and 42 minutes south of the celestial equator and so hopeless beyond the ken of observers situated in the far north.

Seviss calls our attention to the remarkable multiple star system, Omicron (40) Eridani:

There are the two Omicrons, the upper one being o1 and the lower one o2. The latter is of an orange hue, and is remarkable for the speed which which it is flying through space. There are only one or two stars whose proper motion, as it is called, is more rapid than that of o2 in Eridanus. It changes its place nearly seven minutes of arc in a century.

pp 94-5

……………………………………………………………………………………………………………………………

Author’s note: The large proper motion of o2 Eridani is a sure sign that it is located relatively near the solar system. Indeed astronomers esimate that is a mere 16 light years away.

………………………………………………………………………………………………………………………………

Though both o1 and o2 Eridani are quite easily seen with the opera glass, the deeper secrets of the orange star o2 are quite beyond its powers. o2 actually has two faint companions of magnitudes 9.5 and 10.5, which were both uncovered by Sir William Herschel, observing from Bath, England, onthe evening of January 31 1783. These can be resolved by a small telescope using moderate magnifications (discussed by Serviss on page 95). the brighter magnitude 9.5 star is actually a white dwarf, discovered to be such in 1910, while the fainter 11th magnitude component is now known to be a red dwarf star that orbits the white dwarf every 250 years or so. What an eclectic communion of suns!

From northern Eridanus, Serviss next turns his attention to two remarkable asterims higher up in the sky in Taurus; the Hyades and the Pleiades. Easily visible to the naked eye, these clusters of starlight are a delight to study with the opera glass as Serviss enthusiastically informs us. Concerning the illustrious Hyades he writes;

Many of these stars can be seen, on a dark night, with an ordinary opera glass, but, to see them well, one should use as large a field glass as he can obtain……Below the tips of the horns and over Orion’s head, there are also rich clusters of stars, as if the Bull were flaunting shreds of sparkling raiment torn from some celestial victim of his fury. With an ordinary glass, however, the observer will not find this star-sprinkled region around the horns of Taurus as brilliant a spectacle as that presented by the Hydaes and the group of stars just above them in the Bull’s ear.

pp 96-7

……………………………………………………………………………………………………………………….

Author’s note:

Map of the main stars of the Hyades asterism in Taurus. The horizontal axis is measured in hours and minutes of right ascension, and the vertical axis is measured in degrees of declination. Image credit: Wiki Commons.

 

This author has enjoyed many evenings observing the Hyades with his opera glass, or with modern binoculars. The rather restricted field (4.5 angular degrees) of view of the former will just accommodate the main part of the Hyades asterism, but it is still enough to soak up the beautiful ruddy tint of brilliant Aldebaran, and will show many of the brighter stars in the southern part of the characteristic ‘V’ shape, where the mind’s eye can indeed conceive of them as ” shreds of sparkling raiment,” as Serviss describes them. Indeed, close inspection with the opera glass reveals subtle colour differences between its constituent stars; orange, yellow and white.

His remarks concerning what can be seen in a larger ‘field glass’ are entirely valid however. For example, in a modern compact binocular, such as the author’s 8 x 42, the view of the Hyades is transformed immeasurably from that seen in the early 20th century opera glass, where many more stars are manifested owing to considerably greater magnification and a much wider field of view. In particular, the southern part of the asterism comes alive with dozens of faint stars like sparks falling from the fiery red coals of Aldebaran. Indeed, the view of the Hyades in a modern binocular offering a 7 or 8 degree true field is arguably one of the most fetching sights in all the heavens and one this author never tires of exploring!

………………………………………………………………………………………………………………………………..

On page 97, Serviss states that the Crab Nebula ( Messier 1) can be seen in a ” first rate field glass,” in the vicinity of Zeta Tauri.

………………………………………………………………………………………………………………………….

Author’s note: Alas, I have been unable to detect M1 from my observing site using the opera glasses. Indeed, it is very challenging in the 8 x 42, but readily seen as a tiny nebulous speck in a 10 x 50 at the same site. The author did however detect the Crab from a darker setting in the southwest of Scotland using his 8 x 42 during a family vacation in October 2018. The fact that it is a difficult binocular object today probably reflects the darker conditions enjoyed by Serviss at the end of the 19th century.

………………………………………………………………………………………………………………………………

On page 98, Serviss calls our attention to the subtle colour differences between Betelgeuse in Orion and Aldebaran in Taurus;

The redness of the light of Aldebaran is a very interesting phenomenon. Careful observation detects a decided difference between its color and that of Betelgeuse, or Alpha Orionis, which is also a red star……Aldebaran has a trace of rose-color in its light, while Betelgeuse is of a very deep orange.

pp 98

………………………………………………………………………………………………………………….

Author’s note: This is indeed the case. As stated previously, the opera glass is a capital instrument to discern colours in stars. This author can readily detect a rose tinting in Aldebaran while the hue of Betelgeuse does indeed present as a very deep orange. This probably reflects the spectral differences between the stars (K5 and M1 respectively), which in turn are attributed to different absorption characteristsics of the gaseous matter in their outer atmosphere.

…………………………………………………………………………………………………………………………

The magnificent Pleiads.

On page 100, Serviss launches into a fascinating discussion of the Pleiades with beautiful prose:

In every age and in every country the Pleiades have been watched, admired and wondered at, for they are visible from every inhabited land of the globe. To many, they are popularly known as the Seven Sisters , although few persons can see more than six stars in the group with the unaided eye. It is a singular fact that many of the ancient writers declare that only six Pleiades can be seen, although they will also assert that they are seven in number. these seven were the fabled duaghters of Atlas, or the Atlantides, whose names were, Merope, Alcyone, Celaeno, Electra, Taygeta, Asterope and Maia.

pp 100

The mythology behind the Pleaides is not confined to the imaginings of the ancient Greeks though, for as Servss reminds us, the celestial fireflies feature richly in the lore of every nation under heaven. He writes:

They have impressed their mark, in one way or another, upon the habits, customs, traditions, language, and history of probably every nation. This is true of savage tribes as well as great empires.The Pleiades furnish one of the principal links that appear to connect the beginnings of human history with that wonderful prehistoric past, where, as through a gulf of mist, we seem to percieve faintly the glow of a golden age beyond.

pp 101

………………………………………………………………………………………………………………………………..

Author’s note: The Genesis creation account states that when God first fashioned humans in His image from the dust of the ground, he became a living, breathing soul  endowed with remarkable cognitive abilities(far in excess of any beast which, in itself, still presents an intractable problem for evolutionists). And sure enough, archaeologists have uncovered many cave paintings which affirm mankind’s long fascination with the stars, where the Pleiads are often depicted in highly accurate astronomical renderings. See this interesting article for interest. Clearly these early people were no dummies!

………………………………………………………………………………………………………………………………..

Over the next few pages, Serviss delivers an excellent overview of some of the mytholgical lore associated with the Pleiades, particularly that of the ancient Egyptians but also mentioning the Hindus, Persians, Greeks, various south- and central-American cultures and even the Celtic Druids, which is of passing interest, but ultimately unrelated to observing. It is only on page 102 that he re-engages the interested reader with observational commentary, referring to a neat little diagram of the Pleiads on page 103;

With the most powerful field-glass you may be able to see all the stars represented in our picture of the Pleiades. With an ordinary opera-glass the fainter ones will not be visisble; yet even with such a glass the scene is a remarkable one. Not only all of the “Seven Sisters” but many other stars can be seen twinkling among them.

pp 102

………………………………………………………………………………………………………………………………

Author’s note: The low-power opera glass does indeed show many more stars (perhaps 15?) than can be seen with the unaided eye but is simply not powerful enough to discern the fainter members drawn on his diagram presented on page 103. Nonetheless, the opera glass still presents a beautiful and engaging image of this celebrated star cluster that is substantially eclipsed by modern binoculars with their higher powers and superior light throughput.

………………………………………………………………………………………………………………………………

Serviss encourages his readers to learn the name and position of the main stars in the Pleaides before discussing some of the more interesting astronomical science associated with the asterism, particularly evidence associated with their common origin, which includes a common proper motion through interstellar space (see page 103). He even mentions a rather bizarre assessment made by the German astronomer, Johann von Mädler (1794-1874), who first put forth the idea that all the stars of the Pleiades revolved around Alycone, but which was later shown to be untenable. Immediately following this, Serviss embarks on a fascinating discussion of the existence of nebulosity around some of the stars in the Pleiades star cluster:

Still another curious fact about the Pleiades is the existence of some rather mysterious nebulous masses in the cluster. In 1859 Temple discovered an extensive nebula, of a broad oval form, with the star Merope immersed in one end of it. Subsequent observations showed that this strange phenomenon was variable. Sometimes it could not be seen; at other times it was very plain and large. In Jeaurat’s chart of the Pleiades, made in 1779, a vast nebulous mass is represented near the stars Atlas and Pleione. This has since been identified by Goldschmidt as part of a huge, ill-defined nebula, which he thought he could perceive enveloping the whole group of the Pleiades. many observers however, could never see nebulous masses, and were inclined to doubt their actual existence. Within the past few years astronomical photography, having made astonishing progress, has thrown light upon the mysterious subject. The sensitized plate of the camera, when applied at the focus of a properly constructed telescope, has proved more effective than the human retina, and has, so to speak, enabled us to see beyond the reach of human vision by means of the pictures it makes of objects which escape the eye. In November 1885, Paul and Prosper Henry, turned their great photographic telescope upon the Pleiades, and with it discovered a nebula apparently attached to the star Maia. The most powerful telescopes in the world had never revealed this to the eye.

pp 104-105.

……………………………………………………………………………………………………………………………….

Author’s note: The reflection nebula around Merope was uncovered by Wilhelm Temple using a modest 4 inch achromatic refractor. Historical documents do indeed show that this nebulosity was notoriously difficult  to discern visually, especially with large, observatory-class instrumets. One record shows that the celebrated double star observer, S.W. Burnham, failed to see any nebulosity around Merope using a much larger refractor than anything Temple had access to and so expressed doubt of its existence. It was spotted by E.E Barnard though. Such stories are not unique to the Merope Nebula, as similar anecdotes have been reported concerning the Rosette Nebula in Monoceros, which is much better seen in a small, rich-field telescope than a large one with a restricted field of view.

The author is uncertain as to the precise photographic telescope used by the brothers Henry referenced by Serviss above, but it was probably a fore-runner to their 33cm and larger 62cm astrographs used by astronomers at Paris and Meudon Observatory, respectively, in the 1890s. For more information please see chapter 26 on the Great Meudon Refractor in the author’s book, Chronicling the Golden Age of Astronomy (Springer Nature 2018).

………………………………………………………………………………………………………………………………..

To be continued…….

 

De Fideli.

Product Review: The Barr & Stroud Sierra 10×50 Roof Prism Binocular.

The Barr & Stroud Sierra 10 x 50 binocular with peripheral eyeshields.

 

There has never been a better time for the binocular enthusiast. Nowadays, a huge range of models are available that offer high quality optics for nature studies, birding and astronomy. Doubtless, this revolution is wrought by advances in technology; better glass, better coatings,  as well as steady progress in materials science. Greater competition among the various optics houses also helps drive prices down, so that many more people can take advantage of this new technological wave; and that is good news for a multitude of hobbyists.

I recently described my very favourable impressions of a new instrument; the Barr & Stroud Sierra 8 x 42 roof prism binocular, which offers excellent optics, good weather proofing, great compactness and very light weight compared with my old, well-worn 7 x 50 porro-prism binocular, which had served me well for three decades. The 8 x 42 is an ideal instrument for daytime applications, where its decent light gathering power and efficient transmission of light to the eye, yields images that have great colour fidelity and excellent contrast. As I also explained, the 8 x 42 can be used productively for night-time applications, where it offers good performance within the remit of its aperture.

Still, as good as the 8 x 42 is, I felt I was missing out a little were I to use the instrument for specialised deep sky viewing, compared with slightly larger instruments that have long been the staple of the binocular astronomy enthusiast; I wanted to be able to do binocular astronomy using only a binocular; under its own terms.

Enter the venerable  10 x 50. And that prompted me to seek out a high quality instrument that I could almost exclusively dedicate to night sky use. A good 10 x 50 would gain about about a half a visual magnitude over the 8 x 42 and its slightly higher magnification would be advantageous for pulling out faint deep sky objects that are not so well seen with the smaller binocular.  I had heard some great things about the Nikon Aculon 10 x 50 porro prism binocular and I seriously thought about acquiring it, since it seemed to offer a lot of bang for the buck, but when I considered its weight- 898g, it seemed rather on the heavy side. You see for me, weight is a brute fact: the heavier the binocular, the less I would likely use it.

Deeply impressed by the way the compact 8 x 42 handled various situations, I looked again for a roof prism model offering 10 x 50 specifications and it wasn’t long before my interest was piqued by the Barr & Stroud Sierra 10 x 50 roof prism binocular, which I felt was very reasonably priced. So I took the plunge and ordered one up.

Just like the 8 x 42, the 10 x 50 Sierra arrived very well packaged in an attractive box. The same soft, black carry case housed the binocular, as well as receiving the neat 10-year warranty card and single page instruction sheet.

The 10 x50 Sierra binocular in its soft carry case.

 

The binocular is very well built, with a strong, rigid bridge that is not easily moved once the proper interpupillary distance was set. Ditto for the diopter setting, which is quite stiff and thus not likely to budge in field use. Like the 8 x 42, the unit is o-ring sealed and purged with dry nitrogen gas making it fog and weatherproof (water resistant up to 1.5m for three minutes), Its weight is considerably lower than the Aculon; just 780g. The focuser is smooth and firm to the touch and offers an excellent close focus distance of just 2.5 metres (tested). It also has rubberised caps to protect both the objective lenses and the eyepieces. What’s more, they can be permanently affixed to the binocular so they won’t get lost in a hurry.

The 10 x 50 Sierra is fully multi-coated and the prisms are phase coated for optimum field performance.

 

Like the  8 x 42 Sierra, the 10 x 50 unit features fully multi-coated optics and the BaK-4 roof prisms are phase coated to maximise image brightness, contrast and colour fidelity.

Very nicely designed oculars ensure comfortable viewing, either with or without eye glasses. Note; the oculars are shown fitted with eyeshield peripheral shades (purchased separately).

The eyecups can be twisted upwards for use without eyeglasses, or can be kept fully down if oe decides to use them with eyeglasses.

Eye relief is very generous 17.8mm and the field of view offered is just under 6 angular degrees.

Full details of the 10 x 50 Sierra can be viewed here.

The very same afternoon the 10 x 50 Sierra arrived, I took off on my long country walk to see how they performed during daylight hours. The first thing I noticed was their additional weight; fully 130g heavier than the 8 x 42 Sierra. After a few miles of walking with the instrument hanging around my neck, I experienced significantly greater back strain than I was accustomed to carrying the lighter 8 x 42. This was fully expected however and affirmed my conviction that 8 x 42 would better serve me during daylight hours.

I fully expected a little more chromatic aberration, given the specifications of the 10 x 50 and this was confirmed by focusing on a distant hilltop against a bright overcast sky. Still, it was very minimal and perfectly acceptable. Certainly, it would never be enough for me to consider a model with ED glass; that would be overkill to say the least! The images served up by the 10 x 50 were beautiful, crisp and bright, with great colour fidelity and excellent contrast, although it was immediately acknowledged that I would be sacrificing some field of view over the 8 x 42.

While using the 8 x 42 for prolonged periods during my daily walks, I noticed that on bright days, light entering my peripheral vision was causing some annoying glare to seep in. This had nothing to do with the type or make of binocular but merely reflected an operational issue while using any binocular. Thankfully, I found a great solution; enter Eyeshields produced by a US-based company called Field Optics Research.

A good product for any binocular user. Eyeshields by Field Optics Research.

 

Costing £25 delivered, I received two pairs (one for the 8 x 42 and the other for the 10 x 50) of eyeshields which fit snugly onto the oculars and can be deployed at a moment’s notice. They remain permanently affixed to the eyepieces and fold down when not in use. Another neat feature of the EyeShields is that you can still use the rubberised dust caps with them on. They do a simple job, shileding your peripheral vision from stray light, but also stop wind-driven dust from accumulating on the oculars. They work really well, effectively eliminating the said glare I was encountering during my observations. Though a bit costly for what they really are- rubber eyeshields in a tin box lol –  I can certainly vouch for their effectiveness and would highly recommend them to any binocular enthusiast.

One thing caught my attention though: I noticed that the company state that the product is “patent pending”. I don’t know if something like this can really be patented though. I mean, I have similar eyeshields which came with some of my older orthoscopic and Plossl eyepieces, so it’s hardly something truly novel.

The eyeshields very effectively block peripheral light entering the eye while using binoculars in bright ambient light settings.

Ad Astra

Though I acquired the binocular at the start of November 2018, I was not able to conduct star tests until the evening of November 7, owing to a prolonged bout of cloudy, damp and misty weather, typical for this time of year, which all but extinguished the light from the stars. Seeing some breaks in the clouds after dark stoked deep feelings of joy, and I immediately grabbed the 10 x 50 to begin my observations. My first impressions were very favourable. This cost-effective instrument served up beautiful views of the Pleaides, my first target in northern Taurus. I immediately appreciated the wonderful contrast of the instrument and could instantly make out many more fainter members than I could see with the 8 x 42. The increased image scale was quite significant too, framing the asterism very well in the field of view.

Two tests of the size of the field were conducted; first with the Hyades, which was quite simply stunning in the 10 x 50 and I was delighted to see that the main ‘V’ shaped configuration was nicely framed in the binocular field with a little room to spare. The field came alive with many sparkling jewels, brighter and more numerous than in the 8 x 42. Star colours seemed even more vivid too.  Since the main part of the Hyades is in excess of 5 angular degrees wide, this comported well with the field quoted in the specifications table.

In the second test, I was able to get brilliant white Rigel just inside the same field as the Orion Nebula (M42), a distance I estimated to be about 5.7 angular degrees, so quite close to what the manufacturer claimed. It’s nice when the stated specifications agree with experience!

At tightest focus, brilliant yellow Capella in Auriga showed no fringing of any sort that my average eyes could detect, and moving the brilliant autumn luminary to the edge of the field showed that it remained agreeably sharp and tight; perhaps even a tad better than the wider field offered up by the smaller 8 x 42. I reasoned that this was not to be unexpected, as it is easier to get a better corrected field as the field shrinks in size.

Sweeping the binocular through the heart of Auriga showed its clear superiority over the 8 x 42. The 3 Messier open clusters were easier to pull out from the background sky and I was also able to more easily see a number of other fainter nebulae that were mere suggestions in the smaller Sierra binocular.

As a resolution test, I steadied the binocular on the side wall of my house and aimed it at golden Albireo, now rather low in the northwestern sky. I believe I was just able to pick off its companion, something I have not been able to achieve using the 8 x 42 after several attempts.

The weight difference between the Sierra binoculars is immediately obvious under the painted canopy of the night sky. It is harder to hold the 10 x 50 steady, but I find that this is less important for large deep sky objects than it is for studying smaller targets like individual stars, where the wondrous creation of the human eye-brain seems to act as a natural image stabiliser. I found it beneficial to move my hands further forward in order to get a better grip of the objective end of the instrument while in field use. This strategy definitely helps me to get the most stable images from the 10 x 50 during prolonged (greater than 20 seconds or so) observations.

In another test, I compared the binocular views of M 35 in Gemini, which had cliimbed out of the eastern murk, reaching a decent height just after local midnight. While both binoculars easily showed the large, roughly wedge-shaped open cluster, its sub-optimal altitude enabled only a few stellar members to be made out in the 8 x 42 but many more were discernible with the larger 10 x 50.

Some other daylight tests:

Many inexpensive binoculars often come with misaligned prisms which cut off some of the light reaching the eye. This is especially true when the product comes via courier. I’ve had a large 15 x 70 binocular in the past that came badly misaligned, which made me far more cautious about buying a binocular online. Thankfully, this was not the case with the Barr & Stroud binoculars, which were all properly and securely collimated in the factory prior to dispatch.

A simple way to test this is to examine the shape of the exit pupil of the binocular when pointed at a bright light source. A square or non circular shaped light shaft is an easy way to show if the prisms are undersized (thus losing some light) or misaligned. As the photo below shows, the exit pupils of the 10 x 50 are round, as are the 8 x 42s,  indicating that all is well.

No sign of a squared off exit pupil on the Barr & Stroud binocular.

 

Like the 8 x 42 previously tested, the 10 x 50 showed little sign of pincushion distortion while examining the profile of a horizontal roof located about 100 yards distant.

Attaining binocular stability without sacrificing mobility

As I stated previously, binocular astronomy, for me, generally means hand-held viewing, without the need for tripods or other more elaborate kinds of mounts that just get in the way. That’s one of the reasons why I eventually grew disillusioned with large and heavy binoculars. But any 10 x 50 unit, whether roof- or porro prism-based, will eventually show its limitations in regard to attaining rock steady views of star fields, or for teasing apart tighter binocular double stars, or even for seeing the most detail on the Moon. One way round the problem is to stabilise the binocular on a fence or a wall, but this convenience is not always practicle, especially if you’re on the move. The best compromise is to use a lightweight monopod and it is to this device that I turned to in field testing.

One thing the reader must be made aware of is that roof prism binoculars will not, in general, be compatible with standard porro prism binocular tripod adapters. Many of these adapters might fit the roof prism binocular but the stalk will more often than not be too wide to attain the optimum interpupillary distance so important for the most comfortable, immersive views. To that end, I ordered up a smaller adapter especially designed for medium sized (up to 50mm aperture) roof prism binoculars. I elected to go for a well machined, high-quality unit marketed by Opticron (shown below).

The Opticron tripod adapter designed for medium sized roof prism binoculars.

Having acquired a monopod some time ago for use in landscape photography, I was eager to see how the binocular would fare using this configuration, so I began a set of field tests using this device to see if it would tick all the boxes.

The Opticron adapter mates to the 10 x 50 Sierra very well, enabling the correct interpupillary distance to be maintained.

A good fitting: the Opictron tripod adapter mates to the binocular perfectly and will allow the user to re-adjust the interpupillary distance for optimum field performance.

 

The binocular with its adapter readily screws into the monopod. The whole configuration is still very lightweight, ultraportable and is now ready for testing under the night sky.

The 10 x 50 Sierra securely mounted on the lightweight monopod.

To what degree will the monopod stabilise the images in the 10 x 50? Off the bat, it will yield images that are more stable than an image-stabilised (IS) binocular, without the attending arm strain, high cost and need for battery power, but will fall short of that generated by a tripod.

Shortly before local midnight on the evening of November 15 2018, I stuck my head out my back door to discover that the sky had cleared somewhat after a rainy spell. The air was grand and mild, and the Moon had set shortly after 11pm, yielding a fine, dark sky. Pleasantly surprised, I ran in and fetched the 10 x 50 atop the monopod. The Pleiades was very high up in the south; ideally placed for binocular viewing. Settling into my recliner, I was able to negotiate a very comfortable position with the monopod securely held against the ground. Centring the asterism in the field of view, I was dumb struck by how good the view was; a blizzard of blue white stars piercing through the canopy of night in a blaze of glory! The effect of stabilising the view makes an enormous difference to what you see. Some highly experienced binocular users claim that you can go up to a magnitude fainter if the image is stabilised. I don’t know whether that’s accurate or not, but what I can say is that it was a supremely joyful experience. I just lay there for twenty minutes in the dark feasting my eyes on the celestial apparition before me. During the spell, cloud patches of varying thickness marched across the sky, diminishing the brilliance of the Pleiads by varying degrees, but as they passed through the full splendour of the cluster reasserted itself.

I will add a strong ball & socket adapter to the monopod so that I can make angular adjustments to the binocular. That way, I will increase the viewing comfort that little bit more.

That was my first experience with the monopod; a first step. In time, I’ll take another.

November 17 2018:

After rummaging around in me ole box of tricks, I selected a good ball & socket adapter for the 10 x 50 binocular. Although I had a few of these handy, I elected to use one that could carry the 780g instrument with ease. My best one, shown below, can carry cameras and other equipment up to 2 kilos in weight.

An all-metal ball & socket adapter mated to the monopod with a 2 kilo carrying capacity.

 

It worked really well with the binocular in daylight tests. Indeed, it will give me yet another degree of freedom whilst conducting my observations of the night sky.

Another view of the ball & socket adapter mounted on the monopod.

 

So, there it is; I think I’m ready for another session under the stars. What attracts me to this arrangement is its sheer simplicity; increased stability, easy to carry, easy to manoeuvre, easy to store away!

Simplicity itself.

Round about 6pm local time, I ventured out to see if the clear spells we enjoyed during the afternoon had persisted. I was in luck. The 10 day old gibbous Moon was low in the southeast, still a couple of hours before meridian transit. Eagerly, I turned the 10 x 50 astride the monocular mount at it, focused, and then carefully assessed the image.

I was very pleased! Our 70 per cent illuminated satellite showed some wonderful detail, easily superior to the smaller 8 x 42. The prominent ray crater, Copernicus, stood out a mile, as did Clavius and Tycho in the southern highlands. Eratosthenes, Plato and Archimedes proved easy too. The Apennine Mountains were clearly seen running from northeast to southwest and the various maria; Tranquillitatis, Fecunditatis, Serentatis, Nubium and Imbrium were all beautifully presented. Some faint stars in the vicinity of the Moon were easily seen in the 10 x 50. Thin, whispy clouds often ran across the lunar countenance, acting like a natural filter and increasing contrast. The upper edge of the Moon had a very thin bluish hue, whereas its southern counterpart was similarly tinged yellow. I attributed this in the main part to atmospheric refraction owing to its fairly low altitude (20 degrees) at the time the observation was made. Even at its brightest, glare was really well supressed, just like the 8 x 42 Sierra.

The Moon really comes alive in the image-stabilised 10 x 50!

The observations were conducted just standing up with the monopod, and I was able to tweak its pointing accuracy by making small adjustments to the ball & socket bearing. Turning over to the east, I aimed the binocular at Alpha Persei and made some more adjustments to the ball & socket so as to obtain the most comfortable standing observation of the binocular field. Even in bright moonlight, the rich starfields around it were wonderful and sharp almost all the way out to the edge, with excellent contrast.

Final testing: November 18-20 2018

Guid graith.

With unsettled weather being the rule rather than the exception over the last few days, my final tests were mainly conducted on a bright gibbous Moon, now rising much higher in the sky than previously reported on November 17. Whether seated, reclining or standing, the monopod is an excellent platform for image stabilised binocular astronomy, as it’s very easy to find a supremely comfortable position to conduct observations for all altitudes, from the horizon to the zenith. The lunar images remain sharp, with high contrast and very little in the way of glare evident to my eye. The extra image scale (25%) over the 8 x 42 is immediately appreciated, allowing lunar details to be more easily discerned at a glance. Some brief spells observing star fields in bright moonlight also produced very satisfying results. Suffice it to say that I cannot wait for the Moon to get out of the sky so that I can enjoy the wonders of the winter dark with this little instrument.

I have just one quibble with the 10 x 50; the soft carry case is identical to that which came with the 8 x 42. The case is ideal for the latter but is a little too small for the larger 10 x 50. Not a big deal but it should be said.

The Barr & Stroud 10 x 50 is the ideal astronomy binocular, offering exceptional perfromance at a price that meets most folks’ budgets. It’s solid construction, quality optics and very attractive price makes it an exceptional value in today’s market. Indeed, in an age where it is so very easy to get carried away by gimmicks and clever marketing ploys that pressurize individuals to depart with relatively large amounts of money, it is very reassuring to know that one can acquire this level of performance for a very reasonable financial outlay.

I heartily recommend these binoculars to stargazers everywhere and hope that they will give the reader as much joy as they have given me.

Thanks for reading.

 

Neil English is writing a new book dedicated to the ShortTube 80 achromatic telescope.

 

De Fideli.

A Visual Extravaganza Under Dark Scottish Skies.

Looking east: sunrise over Wigtownshire.

 

The heavens proclaim the glory of God.
The skies display his craftsmanship.

                                                                              Psalm 19:1

 

Contrary to what you may have heard in the past, the British Isles offer many outstanding places to observe the heavens. Sure, we don’t have vast deserts or majestic mountain ranges that ascend for miles into the sky, but we are truly blessed with many sparsely populated regions, where the activities of human civilisation are minimal. Having lived in Scotland for more than half of my life, I have been fortunate enough to discover many fine locations that offer both very dark skies and good seeing conditions. One such region lies in Wigtownshire, in the extreme southwest of Scotland, in the district known as Dumfries & Galloway.

Not far as the crow flies from the Scottish Dark Sky Observatory, situated to the north of the Galloway Forest Park, the site offers nearly unobstructed views of the heavens from zenith to horizon in all cardinal directions. The gardens are decorated with beautiful beech and cherry trees, the leaves of which vibrantly radiate the rich colours of autumn during sunny spells. By day, there are many places to visit nearby, including the little town itself, famous for having more bookshops than any other in Scotland, as well as rugged country walkways and picturesque seaside villages that adorn the coastline all around the peninsula.

The nearby fishing village of Portpatrick on the west coast of the Rhins of Galloway.

 

During the four nights we spent there in mid-October 2018, we were fortunate enough to encounter long clear spells every night, and with a low-lying harvest Moon setting early, the skies became wonderfully dark, allowing the full glory of the northern heavens to manifest itself. Owing to its location near the sea, the skies here are regularly swept clear of particulates, which makes for exceptionally transparent conditions, ideal for astronomy.

The shores of Loch Ken, near Castle Douglas.

I took along my best travel ‘scope; a modified 130mm f/5 Newtonian, which has proven superior to a string of other, more traditional, travel ‘scopes I have enjoyed in the past, including a TeleVue 76 & 102, a classic TeleVue Genesis Fluorite F/5,  a PrimaLuceLab ED 90 and a variety of smaller Maksutovs in the 90 to 102mm aperture class. With very generous light grasp and resolution, the 5.1” Newtonian has proven to be an enormously versatile instrument for exploring the landscape by day and by night. I also brought along my recently acquired Barr & Stroud 8 x 42 roof prism binocular to soak up ultra-wide field vistas of the northern heavens that perfectly complement the more restricted field offered up by the telescope.

Plotina: the 130mm f/5 Newtonian travel ‘scope used to explore the northern heavens.

 

To get an idea of how good the skies are here, 8 members of the Pleaides are clearly visible to my average eyes once it rises to a decent altitude, as is the North American Nebula in Cygnus. In addition, a string of Messier objects in Auriga, Perseus, Cassiopeia and Pegasus are much more easily discerned visually than at home. The glory of the Milky Way, snaking its way roughly from east to west, is intensely bright here, so much so that at times I considered it a form of light pollution lol.

The patch of land where most of the observations were conducted, looking northeastward.

 

Clear skies come and go here all the time. For a few hours, they remain resolutely clear, then the clouds roll in off the Irish Sea, occluding the celestial realm for a spell before being swept away to the east. Although many calm spells occur at this site, watching the direction of smoke billowing upwards from the chimney of the cottage’s wood-burning stove, indicates that the prevailing winds are gentle and southwesterly in direction. In addition, the site is very quiet and peaceful, naturally arousing deep spritual feelings from within. In the wee small hours, only the sound of gentle breezes whistling through the trees breaks the silence.

The first night proved profitable for outreach. Although this was our third trip to the cottage, a change of ownership occurred earlier in the Summer, when a married couple with a young family underwent a home-coming of sorts, returning to the land of their youth. Their two boys instantly struck up a friendship with our lads, and so the evening started by showing them the rugged beauty of the Moon, now at first quarter phase, through the little telescope. Nearby Mars proved a little underwhelming though, as by this time it had receded greatly from the Earth in comparison to how it looked in August last, but they were still thrilled to see its little pink disk broiling in the low altitude air close to the southern horizon.

After enjoying some supper, I ventured out later in the evening when the Moon had set to show our guests, which now included the boys’ father, some of the showpieces of the deep sky with the 8 x 42 binocular and the telescope. The Andromeda Galaxy and its spooky satellite systems – M32 and M101 – made a big impression on them. For these objects I used the 25mm Celestron X-Cel LX eyepiece delivering a clean 2.3 degree true field at 26x. The dad was deeply moved with the Perseus Double Cluster, as were his sons, but I also gave them an opportunity to see M57 in Lyra and the beautiful colour-contrast double star, Albireo, well positioned high in the northwest sky in Cygnus. The owner was very surprised to learn that the telescope I had brought was quite inexpensive and seemed genuinely interested in acquiring one for himself.

The telescopic views were complemented by carefree scanning of the heavens with the 8 x 42 binocular. Showing them where to point the instrument, they gasped with sheer delight as they beheld the riot of stars centred on Alpha Persei, now high in the southeast, as well the way the binocular broke up the frothy Milky Way into myriad pinpoint stars against a coal-black sky. I don’t think the father had realised just how good the skies over his farmstead could be. I made it clear to him that he was very fortunate indeed to have such outstanding natural beauty on his doorstep!

The second day of our trip (October 16) started cloudy with some light drizzle, but as the day progressed the rain ceased and the clouds began to break up to leave a fine evening. I waited until the Moon was out of the sky before setting up the 130mm f/5 to observe M 15 in Pegasus. Having the 8 x 42 binocular hanging around my neck at all times, I was able to quickly zoom in on this fairly bright Messier object, first with the binocular, which presented the structure as a reasonably bright fuzzy star. By using averted vision, the size of M15 nearly doubled in size to more than half the size of the full Moon. Using averted vision with binoculars is a new activity for me but it certainly pays dividends! The great darkness and transparency of the air at our observing site enabled the decent light grasp of the telescope to be used productively and I was able to resolve a few dozen of its outlying stars using a 4.8mm T1 Nagler yielding 135x; a very tiny eyepiece by modern standards but a true marvel of optical engineering. Much more compact than M 13, the core of M 15 remained very bright and highly condensed, but as it floated through the huge field of view of the eyepiece with its fairly tight eye relief, I brought to mind its prodigious distance; 34,000 light years, far out in the halo of our galaxy.

From there I sped eastwards into Perseus to see how an improved sky would present the large open cluster M 34. Again, the binocular was used to locate the cluster first before centring it in the field low power (26x) field of view of the telescope. Even at 26x, the view was very impressive, with a sprinkling of 60 or so stars haphazardly strewn across a field of view roughly the same as the full Moon. The view was immeasurably improved using my trusty Parks Gold 7.5mm eyepiece (87x) which framed the entire cluster with just a little room to spare.

At 22:36UT I recorded an extraordinarily bright fireball, which was extremely long-lived, darting across the sky from north to south. At its brightest it was maybe twice the size of the full Moon and took approximately 4 seconds to fizzle out.

The 8 x 42s also made light work of tracking down the rather elusive face-on spiral galaxy, M 33 in Triangulum. At 26x in the 5.1″ the galaxy took on a ghostly cast in an interesting field of mostly 8th and 9th magnitude stars. To my eye, it looked for all the world like a planetary nebula more than a galaxy, with a slight greenish hue. Still, the extra darkness and improved transparency of the Wigtwonshire sky certainly added to the enjoyment of the view. I was particularly delighted by how well the little roof prism binocular could pick it up, as this object has a notoriously large size and low surface brightness.

With the time rapidly approaching local midnight, it was time to have a closer look at the magnificent Pleiades asterism in Taurus. For this target, the binocular proved the superior instrument, with its low power and generously wide field of view (7.33 angular degrees). Riding high in the eastern sky, it was quite simply stunning! Much of the cluster appeared to be enveiled in a fog-like nebulosity which gave it a rather life-like translucent appearance to my eye. No words come close to describiing the full glory of this extraordinary natural beauty and I spent several silent minutes just enjoying the spectacle.

I ended the vigil that evening by examining just a few double stars in the telescope. My notes from earlier years showed how good the site is for conducting high-resolution double star observing during the Summer months, but I wasn’t out to break any records. Suffice it to say that systems that have traditionally been described as ‘difficult’ in more conventional grab ‘n’ go telescopes are beautiful and easily rendered in this instrument. For example, I achieved a most excellent split of the triple system, Iota Cassiopeiae, now very high overhead, using my favourite tools in this telescope for carrying out such work; a 7.5mm Parks Gold coupled to a Meade 3x achromatic Barlow yielding 260x. The three stars were pinpoint sharp (a result of precise collimation using my Cheshire) and the subtle colour differences easily discerned to my eye. Almach (Gamma Andromedae) was gorgeous too at the same power, as was Polaris A & B and  Delta Cygni A & B.

Simply superb for tight double stars; the author’s 7.5mm  Parks Gold eyepiece coupled to a 3x Meade achromatic Barlow lens.

 

Newtonian telescopes are excellent diviners of double stars, an attribute that still appears to be lost on many contemporary amateurs. I have cultivated a theory to explain this anomaly. I suspect that many refractor enthusiasts (onlyists?), accustomed to the hassle-free observing with small refractors, never properly learn how to collimate Newtonians(it does take a while to fully learn the skill!) and, as a result, they attribute their mediocre performance in this regard to other factors and not to badly aligned optics. It’s just a hunch, but I have good reasons to believe it!

With the Moon setting later in the evening of October 17, I gave the telescope a rest and just enjoyed the 8 x 42 binocular. Up until fairly recently, I had forgotten just how wonderful it is to use such a small and lightweight instrument on its own terms. My first target was the magnificent Double Cluster (Caldwell 14) now very high in the eastern sky, as well as the less well-known open clusters surrounding it including the fairly large Stock 2(~1 degree), found by following a curvy chain of stars northwards, away from the twin clusters, and the small and compact (~10’) NGC 957. The binocular view provides a unique perspective that just can’t be replicated in even the smallest rich field telescope.

From there I sought out Kemble’s Cascade, tucked away under Perseus in neighbouring Camelopardalis. A steady hand is a great virtue when deriving the most out of this remarkable linear arrangement of mostly 8th and 9th magnitude suns. Though the cluster is well seen from my home further north, the darker and more transparent skies here made it all the more thrilling to study. For me, binoculars are almost always about hand-held instruments, but I found it beneficial to steady the view on the wooden farm gate on the grounds, where I was able to distinctly make out the small foggy patch denoting the open cluster NGC 1502, where the cascade abruptly terminates.

A little achromatic pair.

 

Though not the best season to explore M 81 and M82 in Ursa Major (they are much higher in the sky in the Spring as seen from the UK), they were very easy to locate in the 8 x 42 binocular despite the constellation’s fairly low altitude in the northern sky at this time of year.  Considerably more challenging though was M51, the famous Whirlpool Galaxy, across the border in Canes Venatici, and even lower down in the sky, which presented in the binocular as a slightly elongated fuzzy patch.

Over in the west, about 8 degrees due south of golden Albireo and on the border with Sagitta, the Coathanger (Collinder 399) asterism was also a joy to observe with the 8 x 42, albeit ‘upside down’ in comparison with the low-power view in the 5.1” reflector. The sense of unity among the stars which comprise the asterism is a pleasant illusion however, as they are actually situated at varying distances from our Solar System. Also nearby, the binocular made light work of tracking down the large planetary nebula M27, which looked like a tiny, incandescent cloudlet against a sable background sky.

Later in the evening, the large and prominent constellation Auriga, represented by a great pentagon traced out on the sky, gained altitude in the east. At its heart, the 8 x 42 presented the three open clusters M 36, M 38 and NGC 1893 very well indeed as foggy patches in a beautiful, rich field glistening with myriad, faint Milky Way stars. M 37 was easy too, just east of the pentagon. About one third of the way in a line from M38 to brilliant yellow Capella, the binocular also swept up the small and faint open cluster, NGC 1857.

As local midnight approached, Taurus had risen to a decent height and it was the ideal time to examine it with the binocular. The generous 7.33-degree field of the 8 x 42 presented the Hyades asterism in all its wondrous detail. Brilliant orange Aldebaran(not a true member however) proved to be a mesmerizing sight, as did the many binocular doubles the instrument picked up immediately to its west. Again, telescopes can’t really do justice to this asterism, as its full glory is hopelessly lost in their much smaller field of view.

As a test, I tried my hand at locating the rather elusive M1 (Crab Nebula) centred on a spot roughly 1 degree to the northwest of the bright blue-white star, Zeta Tauri. I was unable to see anything of this Messier object just hand-holding the binocular, but I believe I achieved success by steadying the view a little on the wooden fence post. Considering that M 1 is a rather lacklustre telescopic object in small and medium aperture ‘scopes, just glimpsing the tiny, roughly 6’ x 4’ smudge was considered a notable visual achievement by this author!

I ended the binocular vigil by welcoming Gemini over the eastern horizon. Though not quite visible to the naked eye owing to its very low altitude at the time of observation, my tiny 42mm ‘double achromat’ made light work of picking up the lovely telescopic open cluster, M35, at the northwestern-most foot of the constellation, together with the fainter open cluster NGC 2158 just next door. This ‘double cluster’ of sorts will look far more impressive when the constellation gains altitude in the coming months.

By half past midnight local time, and with more of the lights from the small, sleepy town nearby having been extinguished, the sky became maximally dark. “The constellations look just like they do in my observing guide!“ I wrote in my logbook.  At the zenith stood majestic Cassiopeia, and ahead of it, Cygnus, now sinking low into the west. Behind it, as if in some kind of grand procession, came Perseus, Auriga, Taurus and mighty Orion looming large in the southeast. The view was so awe-inspiring that I set my binocular aside and just sat in silent contemplation of the lightshow presented to my weary eyes. This, I thought to myself, is the view of the heavens that was accessible to the vast majority of people who ever lived. It had a singular beauty all of its own; just the way the Creator intended it!

And that’s where it all ended on the penultimate night of our stay.

After spending our last day out at Portpatrick(October 18) and a nice family dinner at Bladnoch, we returned to the cottage after dark and to rather more overcast skies. I did venture out to have a look at the waxing gibbous Moon which culminated in the south about 20:00UT when the clouds began to break up once again. Though not a dedicated lunar observer by any measure,  the telescope delivered lovely high contrast images at low and medium powers (up to about 135x). The Moon would not be setting until much later this evening however, so I set the telescope up for work that would not in the least be affected by the encroach of lunar light; double stars.

Plotina; ready for a night of casual double star observing.

 

For this work, I charged the instrument with my Parks Gold 7.5mm eyepiece coupled to a good 3x achromatic Barlow lens yielding 260x and off I went to assess how well the telescope would do this evening. After obtaining lovely splits of Delta Cygni, Iota Cassiopeiae and Epsilon 1& 2 Lyrae, I knew conditions were very good indeed; as they are in many other places in the British Isles. The 1.5″ pair, Pi Aquilae, was a little bit more suspect though, owing to its much decreased altitude in the western sky at this time of year.

A little later, I enjoyed text-book perfect images of Gamma Andromedae, its beautiful colour contrast never faiing to bring a smile to my face. The stellar images in this telescope hardly ever fail to impress. It’s a combination of perfect collimation, modest aperture, good thermal management, adequate light baffling and high-quality optics, but it also requires clear and steady skies, which are accessible to far more observers than has been reported in the recent forum literature.

Two systems in Perseus also proved profitable; Epsilon Persei, with its very faint close-in companion which, of itself, acted as an excellent test of telescopic contrast, and Eta Persei, a lovely wide open, colour contrast double, with a magnitide +3.5 orange supergiant primary and turquoise secondary shining much more feebly at magnitude +8.5.

Finally, this was the evening that I also obtained my first clean split of the tricky system, Theta Aurigae, which was perfectly resolved in the 5.1″ reflector at 260x; my first such splitting of the new season! The difficulty with such a system is the great brightness differential between the components (+2.6/ +7.5) and close angular separation, but the 5.1″ f/5 Newtonian managed it perfectly well as it has done in previous seasons.

I made a quick sketch of how it appeared in the telescope at 22:25 UT (shown below).

An old friend: Theta Aurigae.

 

Note added in proof: On the frigid evening of October 29 at 22:15 UT, in an ambient temperature of -2C, this author took advantage of excellent seeing (Ant I) to obtain his second perfect split of Theta Aurigae of the season using the 130mm f/5 reflector at 260x from his home in rural central Scotland. The Airy disks were round as buttons with a single faint Fraunhofer diffraction ring. Almach (Gamma Andromedae) was spell-bindingly beautiful and calm in the same telescope when examined just a few minutes later.

………………………………………………………………………………………………………………………………

Concluding Comments:

The intensely curious & friendly little hens on the farmstead that cannot help but entertain the visitors!

 

It was good to get away.

The weather was settled and mild throughout, with only the occasional spot of rain. All four nights proved to be good and clear for long spells and the days were filled with worthwhile family activities out and about. This is a great place to observe the preternatural beauty of the night sky, tucked away as it is far from the cities and their horrendous light pollution.

We will certainly be visiting again!

We packed up the car early next morning with the intention of getting a good head start on the road back north. Inevitably on such trips, we always leave stuff behind. Sure enough, the owner emailed us later the same evening informing us that he had found a ” telescope cover” aka my flexi dew shield, and a set of earrings belonging to my wife. The boys were not immune to absent mindedness either, as a pair of ankle socks were found inside one of their beds. He kindly offered to post the items back in the week ahead. On Wednesday, October 24, a large yellow package arrived at our home with the said items inside. I emailed him back later the same evening, thanking him for his prompt attention to this matter but also with the offer to reimburse him fully for his efforts. He replied that there was no need:

“The astronomy lesson with the boys and myself was payment enough!”

Fair is fair I suppose lol!

………………………………………………………………………………………………………………

Appendix: Olber’s Paradox Redux: A Brief Mathematical Treatment of the Consequences of a Dark Sky at Night.

 

In 1823, the German physician and astronomer, Heinrich Wilhelm Olbers (1758-1840) considered an interesting question; why is the night sky dark? At the time, many scientists considered the Universe to be either infinitely old or large, or both. But Olbers considered the logical consequences of this pre-supposition. In an infinite Universe, Olbers reasoned, every line of sight should eventually meet up with the surface of a star. So, the night sky should actually look like the surface of a star. Indeed, the whole sky would appear the same; uniformly bright as a consequence of an infinitely large number of stars. This interesting conundrum is known as Olbers’ Paradox.

A system of stars (or galaxies) arranged in concentric shells with the Earth at the centre.

 

Words can only go so far though, so let us consider the problem from a simple, quantitative point of view.

Suppose we start dividing up the Universe into an infinite number of concentric shells, illustrated in the sketch I’ve made above(apologies for the crudeness of the sketch, as I’m no artist lol), centred on the Earth, with each shell having a uniform thickness, dr. Thus, the volume of each shell (dV) would be the surface area of a sphere of any considered radius r multiplied by its thickness(dr);

So dV = 4πr^2dr.

Now, if there are n stars per unit volume (denoted by asterisks in my sketch), then the total number of stars, N, in each shell will be:

N = 4nπr^2dr.

It is easy to see that the number of stars per shell will scale as r^2. However, the irradiance of each star will fall inversely as r^2, which has a cancelling effect on the overall brightness of each shell and so each shell ought to be uniformly bright.

We must slightly amend the above conclusion, as each star actually has a finite size, with the result that the nearer stars will eventually occlude the light from the more distant stellar members. Still, this would not happen until the entire sky looks as though it is covered with stars. And that returns us to the original conclusion.

Nota bene: The reader will note that each star in the diagram could be replaced by a galaxy with precisely the same consequences!

Let’s now look at possible ways to reconcile Olbers’ Paradox with what we actually witness when the Sun falls out of the sky.  For example, we might consider if the absorption of distant starlight by interstellar (or intergalactic) dust might provide a means of escaping the paradox. Unfortunately, if the Universe is infinitely old, or even existing for just a very long time (say for argument several orders of magnitude older than 13.87 Gyr), then we would expect that such dust particles would have absorbed enough radiant energy to raise their temperature to the same temperature as the surface of a star. And even if it became hotter than the surface of a star, it would merely radiate the excess energy, which the stars would absorb. The consequences are the same though; the sky would look uniformly bright in all directions.

Now consider an expanding Universe, where light is redshifted. In such a case, the energy of each photon of light would decrease as a function of radius, r, so this would help attenuate the brightness of each shell considered above. What happens when we add up individual contributions from each shell? At any fixed radius, the brightness would scale as ∫dr/r, which computes as the natural logarithm of r, i.e. ln(r). But one can readily see that if we choose an arbitrarily large radius, even the quantity ln(r) can become very large indeed, so not ultimately helping us to resolve the problem.

One way out is to consider a Universe that is not infinite in extent, so we can cut off our integral at that finite radius. But there is one other way to achieve the same result, by considering a Universe that has a finite age. Let this age be denoted by t. In this scheme of events, we will only observe stars that are close enough for their light to have traversed the Universe at the speed of light, c. Thus, the radius of that Universe is simply ct. In either scheme; a finite age or finite size, there will exist a limit to the number of concentric shells that could contribute to the brightness of the sky and so the paradox can be resolved!

I find it amazing that from the simple observation that the sky is dark at night, we can arrive at a rather profound conclusion. That said, this analysis cannot, by itself, distinguish which of those scenarios, finite size or finite age (or even both), is the ultimate reason for the darkness of the night sky, but its consequences raise other philosophic/theological questions; if the Universe had a beginning, which has long remained the consensus amongst cosmologists, who or what brought it into existence?

You can’t have an uncaused cause!

To my mind, there is little doubt that the God of the Bible provides the best and most complete answer.

 

In the beginning God created the heavens and the earth.

Genesis 1:1

 

Thus says the Lord who stretches out the heavens, lays the foundation of the earth, and forms the spirit of man within him.

Zechariah 12:1

 

Neil English discusses the work of hundreds of astronomers from the annals of history in his new book, Chronicling the Golden Age of Astronomy.

 

De Fideli.

Investigating the Jet Stream

but test everything; hold fast what is good.

                                                                           1 Thessalonians 5:21

 

My Local Weather

 

Jet Stream Data

Introduction:  One of the statements that is oft quoted by observers, particularly in the UK, is that the meteorological phenomenon known as the Jet Stream seriously affects the quality of high resolution telescopic targets. I have decided to investigate these claims to determine to what extent they are true or not, as the case may be. These data will also provide the reader with an idea of the frequency of nights that are available for this kind of testing over the time period the study is to be conducted.

Method: For simplicity, I shall confine my studies to just four double stars that have long been considered reasonably tricky targets for telescopists. To begin with, my targets will include systems of varying difficulty, ranging from 2.5″ to 1.5″ separation, and the aim is to establish whether or not I can resolve the components at high magnification. These systems include *:

Epsilon 1 & 2 Lyrae

Epsilon Bootis

Delta Cygni

Pi Aquilae

* These systems were chosen for their easy location in my current skies, but may be subject to change as the season(s) progress.

Viewers are warmy welcomed to conduct their own set of observations to compare and contrast results in due course.

Instrument Choice & Magnifications Employed:

The 130mm f/5 Newtonian telescope used in the present investigation.

 

A high-performance 130mm (5.1″) f/5 Newtonian reflector was employed to investigate the effects of this phenomenon, as this is an aperture regularly quoted as being sensitive to the vagaries of the atmosphere. Magnifications employed were 260x or 354x (they can however be resolved with less power). The instrument at all times was adequately acclimated to ambient temperatures and care was taken to ensure good collimation of the optical train. No cooling fans used on any of my instruments.

Results;

Date: August 17 2018

Time: 21:20 to 21:35 UT

Location of Jet Stream: Currently over Scotland

Conditions: Mild, 14C, very breezy, mostly cloudy with occasional clear spells, frequent light drizzle.

Observations: Power employed at the telescope 354x

Epsilon 1 & 2 Lyrae: all four components cleanly resolved.

Delta Cygni: Faint companion clearly observed during calmer moments

Epsilon Bootis: Both components clearly resolved during calmer moments.

Pi Aquilae: Slightly mushier view, but both components resolved momentarily during calmer spells.

Truth seeking.

 

Date: August 19 2018

Time: 20:30 – 21:50 UT

Location of Jet Stream: Currently over Scotland.

Conditions: Mild, 13C, mostly cloudy and damp all day but a clear spell occurred during the times stated above, no wind, heavy dew at end of vigil.

Observations: Seeing excellent this evening (Antoniadi I-II); textbook perfect images of all four test systems at 354x and 260x.

Nota bene: A 12″ f/5 Newtonian was also fielded to test collimation techniques and I was greeted with a magnificent split of Lambda Cygni (0.94″) at 663X. Little in the way of turbulence experienced even at these ultra-high powers. Did not test this system on the 130mm f/5.

Clouded up again shortly before 11pm local time, when the vigil was ended.

Date: August 22 2018

Time: 23:30-40 UT

Location of Jet Stream: Currently over Scotland

Conditions: Very mild (15C), breezy, predominantly cloudy with some heavy rain showers interspersed by some brief, patchy clearings.

Observations: Just two test systems examined tonight owing to extremely limited accessibility; Epsilon 1 & 2 Lyrae and Delta Cygni. Both resolved well at 260x.

 

Date: August 22 2018

Time: 21:00-21:25UT

Location of Jet Stream: Currently over Scotland

Conditions; partially cloudy, brisk southwesterly wind, bright Gibbous Moon culminating in the south, +10C, rather cool, transparency poor away from zenith.

Observations: The telescope was uncapped and aimed straight into the prevailing SW wind, as is my custom.

All four systems well resolved at 354x, although visibility of Pi Aql was poor owing to thin cloud covering.

 

Date: August 23 2018

Time: 20:30-45 UT

Location of Jet Stream: Moved well south of Scotland

Conditions: Mostly clear this evening, after enduring heavy showers all day; cool, 10C, fresh westerly breeze, good transparency.

Observations:  All four test systems beautifully resolved this evening (seeing Ant II) at 354x. Just slightly more turbulent than the excellent night of August 19 last.

 

Date: August 24 2018

Time: 20:30-45 UT

Location of Jet Stream: Just west of my observing site.

Conditions: Almost a carbon copy of last night, light westerly winds, cool (9C), good transparency and almost no cloud cover. Very low full Moon in south-southeast.

Observations: All four system resolved at 260x, but less well at 354x owing to slightly deteriorated seeing ( II-III). Delta Cygni seems especially sensitive to seeing.

Nota bene: Epsilon Bootis now sinking fast into the western sky. This test system will soon be replaced by a tougher target, located higher up in my skies; Mu Cygni.

A capital telescope.

 

Date: August 25 2018

Time: 20:20-21:00 UT

Location of Jet Stream: Right over Scotland.

Conditions: Very hazy, calm, poor transparency, cool (9C), seeing excellent (I-II)

Observations: Just three of the four systems examined tonight owing to very poor transparency. Only Pi Aquilae could not be examined. All three were beautifully resolved at 354x.

 

Date: August 26 2018

Time: 22:30-23:05 UT

Location of Jet Stream: Well south of Scotland.

Conditions: After a day of heavy rain, the skies cleared partially around 11pm local time. Fresh westerly breeze, fairly mild (12C), bright full Moon low in the south.

Observations: Mu Cygni observed instead of Epsilon Bootis owing to the latter’s sinking low into the western sky at the rather late time the observations were made.

Three systems well resolved ( Mu Cygni, Pi Aquliae and Epsilon 1 & 2 Lyrae) in only fair seeing, with Delta Cygni B only spotted sporadically in moments of better seeing. This system is very sensitive to atmospheric turbulence due to a large magnitude difference between components, as opposed to their angular separation. 260x used throughout.

Nota bene: Readers will take note of the frequency of observations thus far made.

Date: August 27 2018

Time: 20:30-21:05 UT

Location of Jet Stream: West of the Scottish mainland.

Conditions: Mostly cloudy, mild, 13C, light westerly breeze.

Observations: I took advantage of a few brief clear spells this evening to target my systems(including Epsilon Bootis). Seeing very good despite the cloud cover (II). All four systems easily resolved tonight at both 354x and 260x.

Date: August 29 2018

Time: 20:25-40UT

Location of Jet Stream: Not over Scotland.

Conditions: Mostly clear, occasional light shower, cool (11C), light westerly breeze, seeing and transparencyvery good (II).

Observations: Mu Cygni now replaces Epsilon Bootis.

All systems very cleanly resolved at 354x and 260x.

Nb. All systems also beautifully resolved in a 12″ f/5 Newtonian at 277x, set up alongside the 130mm f/5.

 

Date: August 30 2018

Time: 20:45- 21:00 UT

Location of the Jet Stream:  Not over Scotland.

Conditions: Partially cloudy with some good clear spells, cool (9C), very little breeze.

Observations: Seeing good tonight (II). All  four systems nicely resolved at 260x and 354x.

Note added in proof: Local seeing deteriorated (III-IV) somewhat between 21:00 and 22:00 UT, so much so that Delta Cygni B could no longer be seen.

 

Date: 31 August 2018

Time: 20:30-22:00UT

Location of Jet Stream: North of the British Isles

Conditions: Partly cloudy and becoming progressively more hazy as the vigil progressed. Mild, 12C, very light westerly breeze.

Observations: Seeing only fair this evning (II-III), all four systems resolved at 260x and 354x, though Delta Cygni B visibility was variable.

 

Date: September 1 2018

Time: 20:30-50UT

Location of Jet Stream: to the northwest of the Scottish Mainland.

Conditions: Partially clear, very mild (16C), light southerly breeze, good transparency.

Observations: Seeing quite good (II).  All four systems resolved at 260x and even better delineated at 354x under these clement conditions.

 

Date: September 4 2018

Time: 19:55-20:20UT

Location of Jet Stream: Not over Scotland.

Conditions: Cool (10C), mostly clear, light westerly breeze, good transparency.

Observations: Seeing very good (II).  All four test systems well resolved at 260x and 354x this evening.

 

Date: September 5 2018

Time: 20:35-20:55UT

Location of Jet Stream: Not over Scotland.

Conditions: Very unsettled with frequent squally rain showers driven in by fresh westerly winds. Good clear spells appearing between showers. Transparency very good. 12C

Observations: All four test systems resolved under good seeing conditions (II) at 260x and 354x.

 

Date: September 6 2018

Time: 20:00-25 UT

Location of Jet Stream: Not over Scotland.

Conditions: Cool (8C), little in the way of a breeze, mostly clear, excellent transparency.

Observations: Seeing good (II). All four test systems well resolved at 260x and 354x.

 

Date: September 7 2018

Time: 20:25-40UT

Location of Jet Stream: Not over Scotland.

Conditions: A capital evening in the glen; 11C, good clear sky, brisk westerly breeze, excellent transparency.

Observations: Seeing very good (I-II).  All four test systems beautifully resolved in the 130mm f/5 using powers of 260x and 354x

Nota bene:

Know thine history!

Any serious student of the history of astronomy will likely be acquainted with the early work of Sir William Herschel (Bath, southwest England), who employed extremely high powers (up to 2000x usually but actually he went as high as 6,000x on occasion) productively in his fine 6.3-inch Newtonian reflector with its speculum metal mirrors. The high powers employed by this author are thus fairly modest in comparison to those used by his great predecessor. Check out the author’s new book; Chronicling the Golden Age of Astronomy, due out in October/November 2018, for more details.

Note added in proof:

With the excellent conditions maintained well after midnight, I ventured out at about 00:00 UT,  September 8, and noted Andromeda had attained a decent altitude in the eastern sky. At 00:10UT I trained the 130mm f/5 Newtonian on 36 Andromedae for the first time this season and charged the instrument with a power of 406x. Carefully focusing, I was treated to a textbook-perfect split of the 6th magnitude Dawes classic pair that are ~1.0″ apart. It was very easy on this clement  night. The pair look decidely yellow in the little Newtonian reflector. I made a sketch of their orientation relative to the drift of the field; shown below.

36 Andromedae as seen in the wee small hours of September 8 2018 through the author’s 130mm f/5 Newtonian reflector, power 406x.

 

If you have a well collimated 130P kicking about why not give this system a try over the coming weeks?

 

Date: September 9 2018

Time: 21:10-25UT

Location of Jet Stream: Currently over Scotland

Conditions: Frequent heavy showers driven in from the Atlantic with strong gusts, 11C, some intermittent clear spells.

Observations: Seeing III. 3 systems fairly well resolved this evening. Delta Cygni B only seen intermittently. Magnification held at 260x owing to blustery conditions.

Date: September 12 2018

Time: 00:10-20UT

Location of Jet Stream: Currently over Scotland

Conditions: Very wet, windy with some sporadic clear spells, good transparency once the clouds move out of the way. 10C.

Observations: Seeing (II-III). Just three systems examined tonight; the exception being Pi Aquliae, which was not in a suitable position to observe. All three were well resolved at 260x. Did not attempt 354x owing to prevailing blustery conditions.

 

Date: September 12 2018

Time: 21:40-55 UT

Location of Jet Stream: Not over Scotland

Conditions: Still unsettled, blustery light drizzle and mostly cloudy with some clear spells. 10C.

Observations: Seeing (III), three systems resolved well, Delta Cygni B not seen cleanly at 260x under these conditions.

 

Date: September 14 2018

Time: 19:30-50UT

Location of Jet Stream: Currently over Scotland.

Conditions: Rather cool, (9C), very little breeze, rain cleared to give a calm, clear sky.

Observations: Seeing II. All four systems cleanly resolved at 260x and 354x

 

Date: September 16 2018

Time: 19:20-40UT

Location of Jet Stream: Currently over Scotland

Conditions: Mild (12C), fresh south-westerly breeze, some occasional clear spells.

Observations: Seeing very good (II), all four systems cleanly resolved at 260x and 354x.

 

Overall Results & Conclusions:

This study was conducted over the course of one month, from mid-August to mid-September 2018, a period covering 31 days.

The number of days where observations could be conducted was 21, or ~68% of the available nights.

No link was found between the presence of the Jet Stream and the inability to resolve four double star systems with angular separations ranging from ~2.5-1.5″. Indeed, many good nights of seeing were reported whilst the Jet Stream was over my observing location. In contrast, some of the worst conditions of seeing occurred on evenings when the Jet Stream was not situated over my observing site.

There is, however, a very strong correlation between the number of nights available for these observations and the efforts of the observer.

Many of the nights the Jet Stream was located over my observing site were windy, but this was not found to affect seeing. While the wind certainly makes observations more challenging, it is not an indicator of astronomical seeing per se. That said, no east or northeast airflows were experienced during the spell these observations were conducted. At my observing site, such airflows often bring poor seeing.

The archived data (from January 16 2014) on the Jet Sream site linked to above provide many more data points which affirm the above conclusions.

I have no reason to believe that my site is especially favoured to conduct such observations. What occurred here must be generally true at many other locations.

These results are wholly consistent with the available archives from keen observers observing from the UK in the historical past. This author knows of at least two (or possibly three) historically significant visual observers who enjoyed and documented a very high frequency of suitable observing evenings in the UK.

Contemporary observers are best advised to take Jet Stream data with a pinch of salt. It ought not deter a determined individual to carry out astronomical obervations. Perpetuating such myths does the hobby no good.

 

 

Neil English debunks many more observing myths using historical data in his new book, Chronicling the Golden Age of Astronomy, due out in October 2018.

 

De Fideli.

An Observing Report from the English Lake District.

Plotina: a 130mm f/5 Newtonian that just goes on debunking myths promulgated by armchair astronomers, poodle pushers and fake theorists.

 

August 15 2018

                                           

Preamble: No doubt you’ve heard one or more of these statements before;

” My skies are never good enough to get steady views”

” The bleedin’ jetstream always gets the better of me.”

“The British Isles suck when it comes to doing visual astronomy.”

” Climate change is making our skies more cloudy, making small refractors more profitable to use.”

” It’s been cloudy for weeks and months on end.”

” My refractor cuts through the seeing like nothing else!”

What do they all have in common?

Lies, more damn lies, or gross distortions of the truth!

You see, I’ve been doing my homework, testing out a modest 130mm f/5 Newtonian reflector all over the British Isles, and finding that many places are plenty good enough for doing high-resolution planetary, lunar and double star observing. And from dark places, low-power, deep sky observing is also very much worthwhile.

Don’t believe me?

Do I sound like I care?

Stick this in your proverbial pipe and smoke it: if only you got off your big, fat, wicked, lazy butt and did some real testing you’d soon come to a knowledge of the truth!

Moi? I’ve observed with the same telescope from no less than five counties in Southern Ireland, the windswept Isle of Skye in Northwest Scotland, Aviemore in the heart of the Scottish Highlands, and rural Aberdeenshire in Northeast Scotland, Wigtown in Southwest Scotland, Seahouses in Northeast England and even in the heart of the large cities of Glasgow and Edinburgh. Most recently, I tested a site in southern Lakeland, Cumbria, the subject of the present observing report.

Thus far this year, I have logged 78 separate sessions under the stars (not all perfectly clear and not all long sessions), either at home here in my rural site just north of the Scottish Central Belt, or while on holiday, and no doubt there were still more nights when I was unable to observe or it cleared too late or some such to conduct any more observations. That’s 78 out of 226 nights, or just shy of 35 per cent! So, more frequently than one in every three nights proved profitable. But I suspect the figure is nearer 40 per cent.

How do these data resonate with the above statements?

They don’t, do they?

Get yer logbooks oot……lemme see yer logbooks.

 

Sheer dumb luck?

Don’t give me that either!

I don’t believe in sheer dumb luck. Nor do I spend my precious time haunting telescope forums, you know, drooling over this instrument or that.

Nope; I’m an observer!

So I just go observing lol. You know, actually looking through my telescope; it’s not so hard is it?

Anyone with a deep enough interest in such things would quickly draw the same conclusions, at least on the British Isles.

Do I believe these findings are unique to Britannia et Hibernia?

Hell no!

Why should they be?

Surely, most of these observations were conducted during warmer, more settled spells, like in Summer?

Nope, computer says no! Check my logbooks!

Good spells occur in all weathers, from freezing cold nights to sweltering hot ones!

Have these data any historical precedents?

Absolutely yes!

See my up-and-coming book, Chronicling the Golden Age of Astronomy, for a full disclosure.

If you take the time to examine the frequency of key historical figures who loved the night sky, you’d find fairly similar results in the literature.

How do I know?

I’ve studied those historical cases.

Phew! Quite a rant there!

But better a rebuke than faint praise eh?

Now, shall we get down to business?

 

Introduction:

Plotina; the author’s ultra-portable 130mm f/5 Newtonian sampling the skies from the southern Lake District, Cumbria, England.

 

A 5.1″ f/5 Newtonian was transported in its custom aluminium case to a site in Southern Lakeland, Cumbria (Latitude: 54.5 degrees North) to establish whether conditions were good enough to resolve a number of test double stars and to more generally assess the seeing and transparency at this location. The success of this modest ultra-portable instrument at various sites within the UK and Ireland has been truly remarkable, so much so that this author has totally abandoned more traditional instruments such as Maksutovs and refractors in favour of this small Newtonian to pursue all areas of grab ‘n’ go amateur astronomy. As explained in a number of previous blogs, the telescope sports a significantly greater aperture (130mm) than your run-of-the-mill grab ‘n’ go telescopes. Possessing a high quality optical flat resulting in a modest 27 per cent (linear) central obstruction, it is significantly smaller than all commercial catadioptrics and sports very high reflectivity coatings that produce bright, crisp images, very comparable to an equivalent sized refracting telescope. In addition, its relatively low mass and open-tubed optics ensures that it cools more rapidly than a similar-sized refractor or catadioptric.

During the trip, just one evening turned out clear, namely the night of Friday, August 10-11 2018.

Conditions:

Mostly clear with some patchy cloud. Temperatures were cool (12C), with a brisk south-westerly breeze, which continued to gust for several hours, abating almost entirely by local midnight. Transparency proved very good and although there was some light pollution owing to neighboring mobile homes, the sky was good and dark. Indeed, I judged the site a little darker than at my rural observing site in Scotland, with the northern Milky Way seen more prominently, snaking its way from northeast to southwest. The northern and eastern sky was especially dark, prominently revealing the majestic constellations of Cassiopeia, Andromeda, Pegasus, while high overhead lay Cygnus and Lyra. The site had a good view of the southern sky, with Aquila and Delphinus situated very close to the meridian. Two bright planets graced the southern sky low down, a dull yellow Saturn and further east, brilliant red Mars.

Method:

The telescope was precisely collimated using a good quality Chesire eyepiece and left to cool for about 20 minutes, with the open tube pointing straight into the prevailing (south-westerly) winds at the site. A working magnification of 260x was adopted to examine a number of test double stars. This was achieved by coupling a 7.5mm Parks Gold eyepiece and Meade 3x achromatic Barlow lens.

For widefield sweeping, a 25mm Celestron X-Cel LX  was used, deliverng a power of 26x in a  2.3 degree true field. Higher power deep sky views were enjoyed with a 5.5mm Meade ultra-wide angle ocular which yields a power of 118x in a 0.7 degree true field. Mars and Saturn were observed at a power of 177x (using an 11mm eyepiece and 3x Barlow), which proved more than adequate, as both orbs were situated very low down in the southern sky around local midnight.

The test double stars were chosen for their easy accessibility as well as being progressively more difficult;

Epsilon 1 & 2 Lyrae

Epsiion Bootis

Delta Cygni

Mu Cygni

Pi Aquilae

Lambda Cygni (examined at 354x using a 5.5mm eyepiece coupled to a 3x achromatic Barlow).

Double Star Results:

The first five test systems produced text-book perfect splits at 260x, the components being very cleanly resolved, and the individual stars presenting as perfectly round Airy disks with a single but rather subdued diffraction ring. The sub-arcsecond pair, Lambda Cygni, revealed its near-equal magnitude components as ‘kissing’ at 354x. You can’t do that with a 4-inch refractor; see here for just one example.

Additionally, the wonderful triple star system, Iota Cassiopeia, was examined later in the vigil, when the constellation had risen higher in the northeastern sky. I was rewarded with a perfectly resolved rendering of all three components at 260x using the 130mm f/5 Newtonian.

Conclusions: 

Despite enjoying just one clear night at this site during our short vacation, I achieved what I have come to view as fairly typical results for many locations in the British Isles. The telescope was able to deliver excellent high-resolution results on these test double stars. As stated earlier, I do not especially attribute these results to serendipity. Indeed, I have come to expect such results when conditions are reasonable at many sites within the UK and Ireland. Such results can easily be achieved by other observers using the same (read modest) equipment with just a little attention to detail; adequate acclimation and close attention to accurate collimation, which can be executed perfectly in under a minute. I would encourage others to test these claims so that these results become as widely known as possible.

Newtonian telescopes will continue to be my instruments of choice to observe such systems in the future, so as to help dispel a particualrly virulent myth that has arisen within the amateur community; a myth born out of ignorance and old fashioned laziness. Such a myth is plainly false and will allow many more observers to pursue such targets with unpretentious instruments that are very reasonably priced.

Observing the Planets:

Although certainly not a dedicated planetary observer, I have come to appreciate the very good views of Jupiter in recent apparitions using the 130mm f/5 Newtonian. During this vigil, my family and I enjoyed very nice, crisp images of Saturn with the telescope at 177x. Despite its low altitude in the southern sky, the planet revealed its glorious white rings with the Cassini Division being plainly seen. Some atmopsheric banding was also observed but, being much farther away, these features are much more subdued than on mighty Jupiter.

Mars was examined at the same power. This was actually the very first time the planet was observed telescopically during the present apparition. The view served up by the telescope was shockingly good and to be honest, not at all anticipated owing to its even lower altitude near the southern horizon. First off, I was amazed at how large the planet looked at 177x (a rather low power for a 5.1″ telescope on such a target generally). Though the image was roiling in the perturbed atmosphere near the local horizon, I was able to make out some dark markings on the planet as well as a rather subdued southern polar ice cap. I was aware that the planet had recently experienced a planet-wide dust storm that all but occluded many of the surface features but I was pleased to see that, while much dust was still present in the atmosphere, it was clearly settling out at the time the observations were made. Mars was a big hit with the family; its large size and great brightness to the naked eye being a lively topic of conversation with my wife and sons.

Into the Deep Sky:

Plotina is a step above the rest of the grab ‘n’ go herd with regard to deep sky observing. It’s highly efficient 5.1″ primary mirror collects enough light to put it in a different league to 90 and 100mm refractors.

How do I know?

I’ve done extensive tests with a 90mm Apo (shown below) and my notes show that double stars hard to see with a four inch refractor are easier to see and resolve in the 130mm reflector. It’s not rocket science!

Faster, cheaper, better: The author’s 130mm f/5 modified Newtonian( Plotina) enjoying crisp, bright terrestrial views and in a completely different league to a 90mm f/5.5 ED apochromat(left).

With the glorious return of true darkness to northern British skies, my first port of call was the endlessly glorious Double Cluster in Perseus. This is where the 25mm Celestron X-Cel LX eyepiece really shone through for me. I don’t know if you’ve ever held on to an eyepiece because of how well it frames a deep sky object, but this ocular delivered an absolutely beautiful, expansive view of the famous open clusters. It’s very comfortable 60 degree AFOV delivers a true field of 2.3 degrees at 26x, centring the clusters perfectly in the middle of the field and showing just enough of the rich stellar hinterland to render the experience particularly memorable. The perfect achromatism of the Newtonian delivers the pure colours of the white, yellow, blue and ruby coloured suns decorating these wonders of nature, each of which are located over 7,000 light years away. I stared at these clusters for a full 10 minutes before dragging my eyeball away!

Next, I pointed the telescope into the heart of Cygnus and drank up the sumptious views of the northern Milky Way, moving the instrument slowly from field to field in awe of the sheer number of stars this wonderful 5.1-inch pulled in. Sometimes deep sky observing is not about seeking out any particular object; for me, it often involves just sweeping the telescope through an interesting swathe of sky, sitting back and enjoying the visual sensations that bring joy to the eye-brain.

My telescopic sojourns eventually took me into Vulpecula, where I quickly chanced upon Brocchi’s Cluster (Collinder 399), otherwise known as the Coathanger, owing to its extraordinary configuation of half a dozen stars arranged just like its common name suggests and spanning over 1.5 degrees of sky, which was easily handled by the 25mm Celestron ocular.

Skies were good and dark enough to observe a number of planetary nebulae in Vulpecula, Lyra and Hercules and for these, I switched out the 25mm ocular for the 5.5mm Meade Ultrawide angle delivering 118x in a fine 0.7 degree true field. Easy to pick up in my 6 x 30mm finder as an 8th magnitude smudge, the 5.1-inch Newtonian delivered an awesome view of M27, the famous Dumbbell Nebula, its enormous size occupying a space fully a quarter the size of the full Moon. I find such structures haunting in the telescope and a kind of shiver went down my spine as I studied its enormous bi-lobed morphology alone in the dark (the wife and kids having now retired for the night). Moving west into Hercules nextdoor, I sought a spot about 4 degrees northeast of the fairly bright star, Beta Herculis. With the generous, wide field of the 5.5mm I didn’t have to switch out for a lower power eyepiece to find the lovely 9th magnitude planetary, NGC 6210. The telescope made light work of picking up its distinctive oval shape and its soft bluish hue. Finally I ventured east again into Lyra, where the telescope made light work of picking up the endlessly interesting M57, the famous Ring Nebula, easily located smack bang in the middle between Beta and Gamma Lyrae. At 188x, this planetary looks big and bright with its inner and brighter outer structures showing up well. It’s amazing that this luminous smoke ring in the August sky is estimated to be a full light year in diameter!

Having studied the bright and comparitively huge globular clusters, M13 and M92 at home in Scotland with my 12″ f/5 Dob, I was impressed at how well they presented themselves in the little 5.1-inch lightcup at 118x. I was in for a bit of shock though when I eventually tracked down M56 in Lyra, located roughly half way between Albireo and Gamma Lyrae. In the 5.5mm eyepiece, this globular was considerably smaller and fainter, looking more like a nebula than anything else. When I cranked up the power to 177x, the view was little improved; just a bright but unresolved core with a smattering of faint stars hovering like little fireflies around it. The view in my 8-inch Dob is far better but still rather lacklustre. I find my 12-inch Dob to do proper justice to this cluster and its gorgeous hinterland of Milky Way stars.

I ended my vigil in the wee small hours of Saturday morning, August 11, with a ceremonial visit to M31 and its satellite galaxies, now riding about one third of the way up the eastern sky. To be honest, galaxies never do much for me and I don’t really understand why folk in possession of larger instruments want to look at them in very small telescopes. Some say it’s heroic and admirable to do that kind of thing but I think it’s bordering on nuts. Why struggle to observe such faint fuzzies when you can more easily study them in larger telescopes? Anyway, the decent light grasp and expansive 2.3 degree field of my new Celestron LX ocular delivered a sterling view of this showpiece object of the autumn sky.

It was good to get away; our first visit to the beautiful Lake District. But all good things have to come to an end I guess.

 

The author did not emerge from pond scum and cannot for the life of him understand why anyone else would have such a low opinion of themselves. Such are the false fruits of evolutionary ‘science.’

 

 

 

De Fideli.

Sampling the Skies in Ireland with a 5.1 inch Newtonian.

Plotina: the author’s 130mm f/5 travel Newtonian enjoying the skies over Cork Habour, Cobh, County Cork, Ireland.

 

July 9 through 21, 2018

It could have been altogether very different.

Having access to a suite of small, portable instruments, like a fine 90mm ED refractor, a first-rate 80mm f/11 achromat, an ETX 90 and a 90mm f/10 achromat, I’m so glad I threw tradition to the wayside and brought along my 130mm f/5 Newtonian telescope on my recent trip to Ireland. As described exhaustively in several previous blogs, the latter instrument is a superior grab ‘n’ go telescope to all of the above instruments on all targets; whether in the Solar System or far beyond. Its mirrors efficiently bring light to a sharp focus and with a relatively small central obstruction (27 per cent), it behaves more like a 5 inch refractor than anything else. Yet it is very lightweight, easy to collimate accurately and, as demonstrated previously, delivers excellent images of planets, the Moon and very tight double stars down to 0.94 seconds of arc: the absolute limit imposed by its 130mm aperture. And, as will be described shortly, it’s not too shabby as a rich field/deep sky instrument either.

These findings were all  previously established in many parts of the Scottish mainland and even on some of the Western Isles, but I was especially keen to see how the telescope would fare at no less than five locations in Munster, the southern-most province of the Irish Republic. I have very fond memories from youth using much smaller instruments, but the 130mm Newtonian promised to reveal much more.

The Journey

The telescope was carried in a sturdy aluminium case in the boot of my car from my home in central Scotland down to southern Scotand, and then by ferry across to Northern Ireland, and from there, southwards to the Republic; a day’s trip.

Upon arrival, the telescope was found to be very slightly out of collimation but a laser collimator made light work of tweaking the optics in a matter of seconds.

Locations tested:

Limerick City: Ballinacurra in the southwest of the city & Caherdavin, a few miles away on the other side of the great River Shannon, in the northwest of the city.

Cobh, County Cork.

Sixmilebridge, County Clare.

Newport, County Tipperary.

 

Conditions: Over ten days, only two nights turned out cloudy, the rest being either fully clear or partially clear. At all locations, true darkness occurred around local midnight, remaining so for about two hours. In general, all observations were conducted on grass, as this was established to be the best surface upon which astronomical observations should be made.

Eyepieces used: Just two oculars were chosen for the trip; a Celestron X-Cel 25mm, delivering a power of 26x in a 2.3 degree true field, and a Meade Series 5000 5.5mm ultra wide angle, serving up a power of 118x in a 0.7 degree true field. Additional powers of 59x and 266x could be pressed into service by attaching a Baader 2.25x Baader shorty Barlow to the 25mm and 5.5mm eyepieces, respectively.

Telescope mounting: The 130mm f/5 is a perfect match for the Vixen Porta II Alt-azimuth mount, which travelled with me along with the telescope. High magnification targets were tracked with ease using the in-built slow motion controls.

Results on the Planets: Planetary views of Jupiter and Venus were conducted earlier in the evening. Mars was not viewed owing to its very late culmination well into the wee small hours of the morning.  The extra 4 degrees of elevation in the sky owing to the sites’ lower northerly latitude (centred around 52 degrees north), proved significant; Jupiter showed a wealth of detail using the 5.5mm Meade ultrawide angle ocular delivering 118x. Much dark banding and subtle colour differences within the bright zones could be discerned. The North Equatorial Belt (NEB) was very prominent throughout all the vigils, being noticeably darker and more disturbed morphologically than its southern counterpart. On one evening, I was able to accurately establish the CM II longitude of the Great Red Spot and the finest images of Jupiter were afforded at Newport, County Tipperary, with the telescope set up on tarmac owing to a lack of a suitable grassy surface, but the relatively high elevation of the shorttube 130mm reflector astride the Viven Porta II above the surface proved an effective dampener of thermals, even though the same day and evening were hot and sunny.

Venus showed its pretty, early gibbous phase at 118x in the telescope, despite its very low altitude at the times of observation. Some atmospheric refraction yielded some false colour but this was expected and largely unavoidable.

The Moon:

On Thursday, July 19, I shared some magical moments with my elder brother, who lives in Newport, County Tipperary. Around sunset, I set the instrument on the tarmac ouside his house and aimed it at a late crescent Moon. The view in the 5.5mm Meade delivering 118x was amazing; my brother being deeply impressed at seeing the entire lunar regolith  in razor-sharp detail, floating through the huge portal hole. At first he couldn’t help but hold the eyepiece (a natural newbie reaction), but as soon as I taught him to let go, he just relaxed and let the telescope do the work. I could tell that he was quite taken aback with this strange little telescope, where you peer through its side rather than directly along the tube. With a few minutes training, he learned how to use the slow motion controls to bring Luna back into the centre of the field.

 Double Stars:

Test double stars examined included:

Epsilon Bootis ( Izar)

Delta Cygni

Epsilon 1 & 2 Lyrae

Pi Aquilae

Such systems were chosen for their sensitivity to ambient seeing conditions and ease of location, even from an urban/suburban setting.

Results: At every location examined, the results proved very much the same: all systems were beautifully resolved at 266x, the companions being perfectly picked off from their respective primaries. One location proved to be windy (overlooking Cork Harbour in Cobh), but this turned out to be largely inconsequential to the observations made. Once the wind died down, the companions yielded easily.

 

Deep Sky Observations:

General appearance of the sky after sunset, as witnessed on a few evenings during the vacation. Such cloud formations augur good, stable summer air.

 

Naked Eye: I immediately noticed the lower elevation of the Pole Star than at home.

I recorded three bright fireball-like meteors streaking across the sky (2 on one evening, the other on a subsequent evening)  from the direction of Cassiopeia/Perseus. These were possibly early Perseid meteors, which will culminate around the middle of August.

Even from a suburban location (Caherdavin), the sky got dark enough to easily see magnitude +4.6, Iota Cassiopeiae, low in the northeast, which was not possible from my Scottish vantage owing to the encroach of twilight. From the same location, I was able to trace out the more prominent parts of the Northern Milky Way streaming through Cygnus and Cassiopeia.

The darkest skies were experienced at Cobh, which is not too surprising, but there was still a significant amount of light pollution from the adjacent harbour to the southwest of my viewing location. Still, magnitude +5.8 Messier 13 could not be seen owing to this light pollution despite its high elevation in the southwest at the times of observation.

Telescopic Impressions:

The 5.1 inch reflector set up for an observing session at Sixmilebridge, County Clare.

The 25mm Celestron X-Cel LX eyepiece proved very satisfactory with the 130mm f/5 reflector, delivering sharp, high-contrast images of star fields nearly all the way to the edge of its 2.3 degree field. I enjoyed studying the stellar hinterlands of bright stars within Cygnus, particularly Sadr and Deneb, the truly dark skies pulling out a wealth of fainter stars frankly invisible in the twilight of Scotland.

M39 in northern Cygnus was pariticularly captivating in the 25mm wide field eyepiece at Caherdavin; a rich smattering of approximately three dozen suns of the 7th magnitude of glory and fainter, arranged in a neat triangular space approximately 30′ in size. The Barlowed view with the same eyepiece at 59X was much more immersive though. M29 was dull in comparison; small wonder my guide book has nothing to say about it lol!

The 5.5mm Meade ocular was by far my most used ocular during the trip. Having become somewhat disillusioned by high-quality, small field of view oculars, such as the Vixen HR series, with their measly 40 degree fields, I very much appreciated the vastly more expansive (yet very well corrected) fields afforded by this 82 degree ocular. Such short focal length, wide-angle eyepieces are a godsend to those who enjoy manually tracking tight doubles. They are visible for longer, allowing the observer much more time to examine their morphology before having to nudge the telescope along.

The 5.5mm served up excellent, immersive views of showpiece summer deep sky objects such as M13, M92 and M57, the 118x power really helping to darken the sky. The view of M13, in particular, was most impressive, even from suburban locations, comparing very nicely with my 5″ f/12 refractor from my recollections. The outer part of the globular was well resolved with dozens of stars seen directly or by using averted vision.

The same eyepiece is especially good at observing wide ‘binocular’ doubles such as Albireo, 61 Cygni, Gamma Delphini, Beta Lyrae and the incomparable 31 (Omicron) Cygni, all of which were enjoyed with the telescope at most of the sites visited.

At 23:30 UT on the evening of July 16, I aimed the telescope from suburban Limerick (Caherdavin) at Iota Cassiopeiae, then located just above the tree line of the garden. To my sheer delight, I was able to clearly see the three components of this trple system using the Meade ocular at 118x. This was a particularly impressive observation, owing to the fairly low power employed but also because of its low elevation at this site. This is a powerful testimony to the excellent stability of Irish suburban skies.

I enjoyed some special time exploring the rich treasures of the far northern constellation of Cepheus on the evening of July 16, which is drowned out by twilight in Scotland. Delta Cephei was very captivating at 118x. The primary is an old, yellow pulsating Cepheid variable( the prototype of this stellar class) with a gorgeous blue companion; a near twin of the more famous Albireo. Xi Cephei  presented beautifuly also; its blue white and yellow suns well resolved at 118x. Omicron Cephei was also briefly visited; easily resolved at 118x but better seen at 266x; its magnitude +4.9 ochre primary and much fainter (magnitude +7.3) steely grey companion being readily observed. Then, there is the incomparable Mu Cephei, an enormous red giant star, its deep sanguine hue standing out like a sore thumb against a good, dark sky was a sight for sore eyes. Mu is comely at low or high power in the 130mm reflector.

Don’t forget Saturn!

Almost forgot!

Though it was past their bedtime, I showed my boys the planet Saturn for the very first time, located well east of Jupiter and only becoming visible to the naked eye very late in the evening. Being even lower in the sky than brilliant Jove, the telescope still did a mighty good job at 118x showing them the mottled globe of the planet, with its beautiful, icy-white ring system, the Cassini Division being easily dicsernible at a glance. The view at 266x was not so good though; a simple consequence of the blurring effect of the Earth’s atmosphere at this low altitude. Still, I showed off Saturn to friends and family where ever possible. Of all the celestial objects studied, it was the Ringed Planet that received the most oohs and aaws!

Concluding Thoughts

The experience of a truly dark sky in mid-July was a joyous event for me; accustomed as I am to ferreting out things to see in twilight at home in Scotland. The small Newtonian proved to be the perfect travelling companion, its generous aperture, light weight and easy set-up all helped to make the trip memorable and worthwhile. In many ways, Ireland is a transformed nation now (it would be naive not to think so); sadly, it has sleepwalked its way into the pernicious mire of secularism, with all its attendant depravities. But at least the skies overhead are still good to go, a comforting reminder of God’s incomparable glory and omniprescence. Though I would like to have visited a site completely devoid of light pollution it was not to be on this occasion, yet conditions were near ideal during these eight days of observations (especially for high-resolution, double star work), but surely many more such evenings occur on the Emerald Isle?

And I’d do it all again in a heartbeat!

 

Neil English is author of a large and ambitious work; Chronicling the Golden Age of Astronomy, due out later in 2018.

 

 

De Fideli.

Observing in Twilight.

A great ‘scope to use in twilight; the author’s 130mm f/5 Newtonian which combines light weight with good optical power.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

At my northerly latitude (56 degrees north) every year from about the middle of May to the first week in August, the sky fails to get properly dark and twilight dominates the northern horizon. As a result, the glory of the summer night sky greatly diminishes, with only the brightest luminaries being visible to the naked eye. But despite these setbacks, one can still enjoy a great deal of observing. In this article, I wish to outline some of the activities I get up to during this season.

Observing in twilight makes observing faint deep sky objects very difficult, so my attention is drawn to the Moon, brighter stars and the planets. Although a telescope of any size can be used during twilight observing, I find it most productive to field a telescope that has decent aperture and so I generally reach for my larger telescopes. Arguably my most used instrument during these times is a simple 130mm f/5 Newtonian, which offers good light grasp and resolution but I am also very much at home with my larger 8 and 12 inch reflectors for more specialised work. The 130mm has the advantage of being light and ultraportable and so I can move the instrument around to get better views of low lying targets.

The bright planets are very accessible during twilight and I find it fun to observe them with a variety of instruments. Venus is generally uninspiring, showing only an intensely white partial disk, but I find Jupiter much more exciting owing to its constantly changing atmospheric features and satellite configurations. But because of its low altitude in my sky, I employ colour filters to bring out the most details on the planetary disk. This is where larger apertures have their advantages, as some filters can absorb a significant amount of light and dim the images too much. The sketch below was made during twilight using my 130mm f/5 and a Tele Vue Bandmate planetary filter, power 108x, which imparts a lively colour tone to the planet, enhancing the colour differences between the dark belts and light zones. It’s also an ideal filter for enhancing the visibility of the Great Red Spot(GRS).

Jupiter as observed durng twilight at 22:55 to 23:05 UT on the evening of May 28 2018 using a 130mm f/5 Newtonian, magnification 108x and a Televue BPL filter.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Twilight nights are also excellent for double star work and summer often brings prolonged periods of excellent seeing at my location. Larger apertures allow higher magnifications to be pressed into service, which also helps to darken the sky making the views more aesthetically pleasing. As in all other aspects of amateur astronomy, you can be as ambitious as you want. The most demanding systems are difficult, sub arc second pairs. As a case in point, I recently trained my 8 inch f/6 Newtonian on 78 Ursae Majoris (78UMa), conveniently located near the bright star, Alioth, in the handle of the Ploughshare. Conditions were near ideal on this evening (details provided in the sketch below) and I was able to push the magnification to 600x to splice the very faint and tight secondary star from the brighter primary.

The sub arc second pair 78 Ursae Majoris 78 as seen in twilight on the morning of May 30 2018 at 23:20UT using an 8″ f/6 Newtonian reflector (no fan).

Another system that I like to re–visit in summer twilight is Lambda Cygni (0.9″), which is easier to resolve than 78UMa, as the components are more closely matched in terms of their brightness and are slightly farther apart. Because it rises very high in my summer sky, it is ideally placed for high magnification work.

Conducting sub–arcsecond work with an undriven Dob mount is certainly not for the faint hearted but does bring its unique challenges, and I for one get a buzz out of doing this kind of work. But there are many easy and visually stunning systems that can be enjoyed at lower powers and it is to some of these that I will turn my attention to in the coming nights.

Last night (the early hours of June 2 2018) my wonderful little 130mm f/5 Newtonian was used to visit a number of easy to find and visually engaging binary and multiple star systems. During warm, settled weather, and with high pressure in charge, the twilight conditions proved near ideal for studying these fascinating objects;

Some binary systems visited in twilight using a 5.1″ f/5 Newtonian.

 

 

 

 

The celebrated Double Double in Lyra as seen through the 5.1 inch reflector at 260x.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The very fetching Epsilon Bootis as seen in the 130mm f/5 Newtonian at 260x.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

These observations were conducted between 23:00UT and 00:00 UT.

Indeed, of all my Newtonians, it is the 130mm f/5 that provides the most aesthetically pleasing views of double stars. Colours are always faithful and images are invariably calm owing to its moderate aperture and rapid acclimation. Contrast is excellent too. It just delivers time after time after time…..

The sky as experienced 15 minutes before local midnight on the evening of June 12 2018.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As May turns to June, the twilight becomes ever brighter, with more and more stars becoming invisible to the naked eye. But this greater sky brightness should never deter a determined observer. On the evening of June 12 2018, I set about visiting a score of  double and multiple stars with my 130mm f/5 Newtonian, as is my custom. I turned the telescope toward Polaris at 22:45 UT  and was deligted to be able to pick up the faint 8th magnitude companion to the 2nd magnitude Cepheid primary. Looking for something more challenging, I waited another half an hour to allow the sky to darken maximally but also to allow a summer favourite to gain a little altitude but still several hours away from culmination in the south. I speak of that wonderful binary system, Pi Aquilae( Aql), a pair of yellow white stars of near equal brightness and separated by about 1.5 seconds of arc.

From extensive, previous experience, I know it is possible to split this pair in smaller telescopes than the 5.1 inch reflector, particularly a suite of refractors ranging in aperture from 80mm to 102mm. But under these June conditions, the advantages of decent aperture become readily apparent; smaller telescopes simpy run out of light too quickly when the high powers needed to splice this pair are pressed into action. Locating the 6th magnitude pair at a fairly low altitude under bright June twilight  is even a challenge for the 6 x 30mm finder astride the main instrument. To my delight though, I was able to track it down and once centred, I cranked up the power to 325x ( using a 2mm Vixen HR ocular) to obtain a marvellous view of this close binary system, the components aligned roughly east to west with clear dark space between them. Adopting these powers with smaller apertures is problematical to say the least. Why strain one’s eyes when one can view it in much greater comfort using the generous aperture of this trusty 130mm grab ‘n’ go ‘scope?

I made sketeches of both Polaris A & B and Pi Aql as I recorded them at the eyepiece (see below).

Polaris A & B and the tricky, near equal magnitude pair, Pi Aql, as seen in the 130mm f/5 Newtonian reflector on the evening of June 12 2018.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As the June solstice approaches, the twilight continues to brghten the sky, but there’s still lots to see. Beginning about 10pm local time, I began observing a pretty crescent Moon sinking into the western sky. The instrument I chose this evening was a very inexpensive but optically excellent 76mm f/9.3 Newtonian reflector, which I described at length in previous blogs such as this one. Because our natural satellite is so big and bright, a small telescope like this one is ideal for casual observing. Because the sky is still quite bright at this time, I found it helpful to employ either a neutral density or variable polarising filter to increase the contrast between the lunar regolith and the background sky.

An amazing performer in June twilight: the Orion Space Probe 3 altazimuth reflector.

Observing the Moon in June twilight is fun at all magnifications, but I have discovered this little telescope can provide razor sharp images up to about 210x. You’ll not get this information from the telescope forums though; it still seems beneath them to test it and spread the word, but I digress!

On the evening of June 18 2018, I visited a suite of summer double and multiple stars with the same instrument.

At about 11.30pm local time, the sky was dark enough to track down some pretty tight double stars, as well as a variety of easier but just as comely systems. Conditions were good enough for the little Spaceprobe reflector to nicely resolve Epsilon Bootis, Epsilon 1 & 2 Lyrae and Delta Cygni (210x in each case). My study of the Lyra Double Double in particular with this telescope shows that it is significantly better than any 60mm refractor in terms of raw resolving power. As I have reported earlier this year, the same telescope was able to resolve Xi Ursae Majoris, Porrima, Eta Orionis, and the wonderful triple system, Iota Cassiopeiae. Sadly, the latter system, which is still present low in the northern sky in June, was hopelessly lost in the summer twilight. Bootes always presents a nice playground for easy and pretty double stars, including Kappa, Pi, Xi and Nu 1 & 2 Bootis, which were all easily split at 116x.

June is also high season for the beautiful, ghostly whisps that meteorologists refer to as noctilucent clouds. These thin, high altitude formations are lit up by the Sun while still below the northern horizon, creating quite surreal visual delights to the naked eye. I took a couple of low resolution images with my iphone (shown below).

Noctilucent clouds captured outside my house at local midnight on the evening of June 18 2018.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Another view captured at local midnight on the evening of June 18 2018.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I shall endeavour to capture some higher resolution shots of these wonderful meteorological structures in due course.

Plotina, the author’s amazing 130mm f/5 Newtonian reflector as seen at 11.10pm on the evening of June 21 2018.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

On the June Solstice of 2018, I  walked through the garden in the cool of the evening, fetching my trusty Vixen Porta II mount to field my 130mm f/5 Newtonian. A gentle westerly breeze was blowing and the sky was resolutely clear, but I have learned on many past occasions that these conditions often bring very good seeing conditions for high resolution double star work. And my efforts were rewarded with text book perfect images of a suite of difficult double stars, some of which I have mentioned earlier in this report. I also ended my year long evaluation of a variety of eyepieces and Barlow lenses,varying quite considerably in price range. These studies have led to some firm conclusions regarding the effects of moving air upon Newtonian optics, as well as some very surprising results concerning the efficacy of certain oculars in regard to resolving double stars. Do you always get what you pay for? Most certainly not!

Insofar as artificiallly blowing air on a Newtonian mirror has been shown to scrub off the so-called boundary layer immediately above the reflective surface, my field testing over many nights shows that natural wind can also improve the images in exactly the same way. For this reason, I invariably point the telescope into any prevailing wind while the telescope cools and this works especially well for my larger Newtonian reflectors (8- and 12 inches). Furthermore, I am not aware of any historical precedent for this; the work of some notable telescopic ancestors of the ilk of W.F. Denning, T.H.E.C. Espin, T.E.R. Philips, A.S. Williams, T.W Webb and N.E. Green ( the selected work of which I will feature in my up-and-coming historical work) all of whom used Newtonian reflectors to great effect do not explicitly give mention to this result, though there is no doubt it is generally true.

The Vixen HR series of oculars; nice but totally overkill for high resolution double star work in medium and large aperture aperture Newtonian reflectors.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

On many fine evenings using a variety of Newtonian telescopes, I have compared the views through top-of-the-range eyepieces, such as the new Vixen HR series of ultra-short focal length oculars(1.4mm, 2.0mm and 2.4mm) and those derived from much more modest (but still very good) Plossls and orthoscopics coupled to decent Barlow lenses and my conclusions are that the much more expensive eyepieces do not confer any real advantages over the latter.

Ordinary eyepieces and Barlows work perfectly well with Newtonian reflectors for high-resolution double star work. Left to right; a 3x Meade achromatic Barlow, a 7.5mm Parks Gold and Baader 6mm classic orthoscopic.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Yes, the HR series do display slighly better contrast and reduced light scatter compared to Plossls and orthoscopics but the differences were never enough to count. i.e. There was never an occasion where I could not see a tight companion in one over the other at comparable magnifications. Indeed, the HR series of eyepieces have very restrictive fields (42 degrees), even compared with the modest 50 degree fields offered up by a Plossl and/or the Baader classics (which have a larger 50 degree field) when Barlowed allow for significantly larger fields to be exploited. There is thus a distinct advantage to the using the far less expensive Plossl and orthoscopic type eyepieces over the HR series (the three of which will set the consumer back a hefty £750 UK), especially when employing a non-motorised altazimuth mount such as my Vixen Porta II.

Don’t believe the hype; binary stars are very simple, just tight little Airy disks. Save your money and use it more productively on other things.

Well, I hope you enjoyed this blog and that you don’t become discouraged observing throughout the twilight season wherever you live.

Thanks for reading.

 

Neil English’s new book, Tales from the Golden Age, uses history to debunk a few myths that have crept into modern amateur astronomy. Available in late 2018.

 

 

Further Newtonian Adventures with Double Stars.

'Plotina'; the author's ultraportable 130mm f/5 Newtonian reflector.

‘Plotina’; the author’s ultraportable 130mm f/5 Newtonian reflector.

 

 

 

 

 

 

 

 

 

 

In this department of astronomy, the names of Herschel, South, Struve, Dawes, Dembowski, Burnham, and others are honourably associated and it is notable that refracting-telescopes have accomplished nearly the whole of the work. But reflectors are little less capable, though their powers seem to have been rarely employed in this field. Mr. Tarrant has lately secured a large number of accurate measures with a 10-inch reflector by Calver, and if care is taken to secure correct adjustment of the mirrors, there is no reason why this form of instrument should not be nearly as effective as its rival.

W. F. Denning, from Telescopic Work for Starlight Evenings (1891), pp 290-291

Eye seeth afore I measureth.

Introduction: Having spent several years enjoying the views of double stars of varying degrees of difficulty with a variety of classical achromatic and apochromatic refractors of various apertures (60mm-150mm), this author has dedicated the last 15 months investigating the prowess of Newtonian reflectors in regard to their efficacy in splitting double stars. Surprisingly, a 8″ f/6 Newtonian with traditional spider vanes and a 22 per cent central obstruction was found to be noticeably superior to a first rate 5″ f/12 glass, as well as a 180mm f/15 Maksutov Cassegrain, on all targets, including double stars.

These experiences have collectively led to a deep seated scepticism concerning the traditional claims of self appointed ‘authorities’ who have tended to downplay the Newtonian reflector as a worthy double star instrument. But as the quote from Mr. Denning’s book states above, this prejudice is not derived from sustained field experience. Instead, it is cultivated by, at best, tenuous theoretical considerations. And yet theory counts for nothing if contradictions are found by experimentation, and must be revised in light of new evidences brought to the fore by active observers.

In this capacity, this author has spent several months investigating the performance of a very modest 5.1 inch (130mm) f/5 Newtonian reflector on an undriven alt-azimuth mount. The instrument was modified  in two principal ways:

  1. The original secondary mirror was replaced with a slightly smaller flat (blackened around its periphery), giving a central obstruction of 26.9 per cent, significantly lower than Schmidt and many Maksutov Cassegrains of similar aperture.
  2. Both the primary and secondary mirrors were re-coated with ultra-high reflectivity (97 per cent) coatings delivering a light throughput broadly equivalent to a refractor of similar size.

The instrument has a single stalk supporting the secondary mirror which produces greatly reduced diffraction effects compared with more traditional  Newtonians, yet was found to be sufficiently rigid to deliver very sharp and detailed views of the Moon, planets and deep sky objects.

The single stalk, rigidly supporting the secondary of the 130mm f/5 Newtonian.

The single stalk, rigidly supporting the secondary of the 130mm f/5 Newtonian.

 

 

 

 

 

 

 

 

 

 

The optical train can be accurately aligned in minutes by means of fully adjustable screws on both the primary and secondary mirrors and an inexpensive laser collimator.

The collimating screws behind the primary mirror.

The collimating screws behind the primary mirror.

 

 

 

 

 

 

 

 

Preliminary field testing has shown that the telescope provides very fine high power views of stellar targets under fair to good conditions. Even at  powers beyond 50 per inch of aperture, stars remain round, free of astigmatism and perfectly achromatic. Furthermore, the diffraction spikes attributed to Newtonians are much subdued in this instrument owing to its single vane secondary support. The diagram below shows the relative intensity of diffraction spikes manifesting from various secondary mounting configurations and the reader will note the minimal effects of a single support (seen on far left).

Comparison of diffraction spikes for various strut arrangements of a reflecting telescope – the inner circle represents the secondary mirror

Comparison of diffraction spikes for various strut arrangements of a reflecting telescope – the inner circle represents the secondary mirror.

 

 

 

 

 

Materials & Methods: The telescope was mounted on an ergonomic but sturdy Vixen Porta II alt-azimuth mount equipped with slow motion controls on both axes. the instrument was carefully collimated prior to the commencement of observations using a laser collimator. No cooling fans were employed. A red dot finder was used to aim the instrument and various oculars and barlows were used to resolve pairs. For fainter stellar targets, the system was centred first using a 32mm SkyWatcher Plossl which delivers 20x and an expansive 2.5 degree true field.

Results:

Date: 12.05.16

Time: 00:00-00:30 UT

Seeing: Antoniadi II-III

Epsilon Lyrae: x 271; all four components cleanly resolved, stars round, white and undistorted. No diffraction effects noted.

Pi Bootis: Easy at 150x. Components appearing white and blue-white.

Mu Bootis (Alkalurops): Wonderful triple system; fainter pair (magnitudes 7 and 7.6) separated by 2.2″ and perfectly presented at 271x. This pair has an orbital period of just 260 years!

Epsilon Bootis: Primary (magnitude 2.5) presenting in a lovely ochre hue and its fainter companion (magnitude 4.7) easily picked off at 271x.

Delta Cygni:  Magnitudes: 2.89, 6.27, separation:  2.7″

Well split at 271x, although conditions a little turbulent and not yet at an optimal altitude for observation.

Date: 13.05.16

Time: 00:00-00:30 UT

Seeing: II. Indifferent seeing at sunset (III-IV), improving as the night advanced (II).

Temperature: +7.5C

Xi UMa: beautiful clean split of this 1.6″ pair (magnitudes 4.3 and 4.8) at 271x

Epsilon Bootis: textbook perfect split @ 271x

Delta Cygni: Child’s play this evening, separation 2.7″. Companion presented as a perfectly round, steely grey orb @271x.

Beta Lyrae: remarkable multiple star system. Four white/blue white stars framed in the same field at 271x.

O^1 Cygni: a corker at 20x, but more fetching at 81x. Orange and turquoise stars, with the former showing its blue magnitude 7 companion.

Date: 15.05.16

Time: 22:30 UT

Seeing: II-III, clear, brightening moon, twilit

Temperature: +3.5C

Iota Cassiopeiae: Just one entry tonight. More challenging to locate owing to its relatively low altitude above the northern horizon and the encroach of twilight. All thee components well resolved at 271x. This is the third successful split of this attractive multiple star system with the same instrument.

Date: 21.05.16

Time: 22:10 UT

Seeing: II, partially cloudy, twilit.

Temperature: +10C

Epsilon Bootis: Another lovely split this evening @271x. Primary(magnitude +2.5) orange and the secondary a regal blue (magnitude 4.9) separated by 2.8″.

Xi Bootis: Striking yellow and orange components (magnitudes 4.7 and 7, respectively), separated by ~6.5″ and beautifully framed @ 150X.

Rho Herculis: A comely pair of blue-white stars shining at magnitudes +4.5 and +5.4. Easily resolved (4.0″)@271X.

22:30UT

Epsilon 1 & 2 Lyrae: textbook perfect split of all four components @271x. Subtle colour differences noted between the stars.

22:45 UT

Delta Cygni: Perfectly resolved at 271x. Magnitudes: 2.89, 6.27, separation:  2.7″

Date: 22.05.16

Time: 23:10UT

Seeing: II, very good, mostly clear, twilit, bright Moon low in south.

Temperature: +9C

Marfik(Lambda Ophiuchi): Quite hard to track down owing to an unusual amount of glare in the southern sky. System split at 271x. The components ( magnitudes 4.2 & 5.2), well resolved. Tightest system so far resolved with this instrument: 1.4″. Both stars appeared creamy white and orientated roughly northeast to southwest. Superficially, very much like Xi UMa but slightly more challenging.

No’ bad ken.

Date: 24.05.16

Time: 00:10 UT

Seeing: I-II, excellent steady atmosphere, no cloud, twilit, cool.

Temperature: +5C

Pi Aquilae: Another good target affirmatively resolved this evening. Separation 1.5″ with magnitudes of 6.3 and 6.8. Power of 271x applied. First hint of duplicity seen shortly after local midnight when the system was quite low down in the east, but much better presented at 23:45 UT when it rose a little higher.

Delta Cygni: Another textbook perfect split! This system is child’s play with this telescope, but remains a good indicator of local seeing.

I would warmly encourage others using this telescope, or its closed tubed counterpart, to confirm these findings.

Date: 28.05.16

Time: 22:45 UT

Seeing: II, good stable air for double star work, cloudless sky, twilit.

Temperature: +6C

Epsilon 1 & 2 Lyrae: beautiful easy and dazzling split of all four components @271x

Delta Cygni: Another textbook perfect split of this very unequal magnitude pair @271x

Mu Cygni: difficult to find as it is currently lower down in the east under twilit conditions. Excellent multiple star system, A-B well split @271x, colours white and yellow (+4.8/6.2 magnitudes, respectively), separation ~1.66″. Another tight, unequal magnitude pairing. C component too faint to pick off in the twilight. D component (+6.9) seen about 3′ off to the northeast.

Doing well so far don’t you think?

Ps. Interesting findings from a few guys here.

Date: 29.05.16

Time: 23:10 UT

Seeing: II, almost a carbon copy of last night. Twilit.

Temperature: +7C

Just two targets this evening.

Epsilon Bootis: a good ‘warm up’ system. The telescope showed a textbook perfect split during the finest moments at 271X. I have found that wearing a good heat-insulating jacket and hat gives noticeably better results on cooler nights, as thermal energy from the body can sometimes distort the image at least for a wee while.

From there I moved to my target system for the evening.

Sigma 1932 AaB: a very challenging system in Corona Borealis. It is located about 3.67 degrees directly west of Alphecca (alpha CrB) which is easily seen even in twilight. My 32mm SkyWatcher Plossl, which yields a field of view of 2.5 angular degrees was used, together with my star atlas, to finally track down this magnitude 7 system. After a few false starts, I eventually centred the target system, cranked up the power to 271x and, with a concentrated gaze, obtained a good split! This binary system consists of a pair of yellowish stars with equal magnitudes (7.3 and 7.4, respectively) oriented roughly east to west and separated by 1.6″.

Battle o' the weans. In the foreground a 90mm Apo, in the backgroud, a 130mm Newtonian.

Battle o’ the weans. In the foreground a 90mm Apo, in the backgroud, a 130mm Newtonian.

 

 

 

 

 

 

 

 

 

 

Date: 30.05.16

Time: 23:00-23:30 UT

Seeing: A fine and mild night, remaining very good (II), high pressure bubble stabilised over Scotland, some intermittent cloud, twilit. Midge flies back.

Temperature: +11C

Tonight, I wanted to compare and contrast two very different telescopes in respect to their ability to split a few of the tougher pairs visited thus far; a 90mm f/5.5 doublet Apo (retail price now £912 UK) and the 130mm f/5 Newtonian (~£200 UK with the modifications).

System:Delta Cygni

90mm glass; difficult split @208x

130mm speculum: much more cleanly resolved@271x

System: Pi Aquilae*

90mm glass: very dim, touching @208x

130mm speculum: cleanly resolved/brighter @271x

System;Marfik*

90mm glass: dim, elongated @208x

130mm speculum: fully resolved /brighter @271x

*Suboptimal altitude

You cannae change the laws o’ physics captain!

And ignorance of the law is no excuse.

Oh vanity of vanities!

Self-evidently, an unfair comparison: the 130mm f/5 Newtonian is clearly the superior double star instrument.

The words of the prophet, Isaiah, come to mind;

For fools speak folly,
their hearts are bent on evil:
They practice ungodliness
and spread error concerning the Lord;
the hungry they leave empty
and from the thirsty they withhold water.
Scoundrels use wicked methods, they make up evil schemes
to destroy the poor with lies,
even when the plea of the needy is just.
But the noble make noble plans,
and by noble deeds they stand.

Isaiah 32:6-8

Date: 31.05.16

Time: 23:05 UT

Seeing: III; significantly more turbulent than last night. Twilit.

Temperature: +10C

This evening I had intended to concentrate my observations on one target; the very difficult sub-arc second companion to Lambda Cygni, using my best instrument; a 8-inch f/6 Newtonian, in order that I might train my eyes to see this companion (separated by 0.9″) in my smaller 130mm instrument.

Using the 130mm as a seeing gauge; I found Epsilon 1 & 2 Lyrae to be resolved well but nearby Delta Cygni was poorly resolved. This was also found to be the case in the 8-inch aperture.

Project shelved for a better night.

Date: 01.06.16

Time: 23:30 UT

No opportunities afforded this evening owing to the encroach of haar after sunset.

Let us consider some of the optical principles relevant to splitting such a tight pair.

Diffraction theory states that the position of the first bright ring (between 1st and 2nd minima) is located at a linear radius of 1.63 lambda x F where lambda (wavelength) is quoted in microns and F is the focal ratio of the scope. By dividing this quantity by the focal length we obtain the angular radius of the 1st minimum (in radians) and this yields (1.63 x lambda)/D where D is the aperture of the scope in metres.

Now, there are 57.3 angular degrees in a radian and 3600 arc seconds in each angular degree, so if we multiply the above expression by 57.3 x 3600 = 206280 and so we arrive at 206280 x (1.63 x lambda)/D.

Setting D = 0.1m for example, and lambda = 0.55 microns (green)  yields 1849300 micro arc seconds, which is 1.85”.

Or more generally, the locus of the first diffraction ring is 185/D where D is the aperture of the telescope expressed in mm.

Applying this formula to the 200mm and 130 mm reflectors, the position of the first diffraction ring is 0.9” and 1.4”, respectively. Thus, the companion to Lambda Cygni will be located on the first diffraction ring in the 8-inch instrument, and inside the ring in the case of the 130mm telescope.

The primary has a magnitude of +4.5 and the secondary, + 6.3, so there is a magnitude differential of 1.8. The significant brightness differential makes this system more difficult to crack.

The Dawes limit for a 130mm (5.1 inches) ‘scope is given by 4.57/D in inches, which is ~0.9”.

More on this here.

Date: 02.06.16

Time: 23:30 UT

Seeing: III-IV, very turbulent

Conditions clear but remaining very turbulent. A light, northeasterly air flow is likely the culprit(see my local weather; Stirling, Scotland).

My notes show that I have glimpsed the companion to the primary on a few occasions over the last few summers with my 5″ f/12 achromatic. But I have seen it much more clearly – and also on a few occasions – with the 8″ f/6 Newtonian.

Date: 06.06.16

In order to maximise my chances with Lambda Cygni, I have decided to wait until August at the earliest, when the system will be high overhead here, in a dark sky. Patience is a virtue is it not? And I can afford to be patient with this one, as it is a very slow moving binary and so will remain very challenging for a good few years to come. So no hurry.

The capabilities of the 130mm f/5 on double stars have already well exceeded my expectations. My experiences with the smaller, 90mm refractor especially, have reinforced the notion that aperture is a vital commodity when it comes to seeing objects clearly and distinctly. It pays to remember that resolution scales with aperture. That’s why it is easier to see things in the 130mm than the 90mm, irrespective of how fancy its optics and mechanics are. And this can be tested, again and again and again…..ad nauseam.

This is factual knowledge, and facts are stubborn and immutable things!

Physics pays no attention to human hubris.

Physics cares little for hubris.

 

 

 

 

 

 

Over the next few months I would like to return to the many beautiful and easy systems within reach of this remarkable telescope; even in heavy twilight.

Time: 23:00-59 UT

Temperature: +11C

Seeing: II, good, a little hazy, twilit.

I walked through the garden in the cool of the evening, after a very warm and sunny day. I set up the 130mm f/5 as usual and began to explore some of the nicer double stars of the sky.

Mizar & Alcor: A perennial favourite, high overhead this time of year, dazzlingly bright, the light from these stars fills the field and induces instant joy. Well framed at 81x in my trusty Baader mark III zoom.

Cor Caroli (Alpha CVn): Easy to find under the handle of the Ploughshare. Both components appearing white to the eye with magnitudes 2.9 & 5.6.

Alpha Herculis (Rasalgethi): A corker! At 108x, this pair presents as marmalade orange and blue-green, which orbit their common centre of gravity every 3600 years.

Albireo (Beta Cygni):  A stunning sight in the little reflector at 81x. Glorious contrast of colour; orange (magnitude 3.1) primary, blue-green secondary (5.1).

61 Cygni: historically very significant as the first star system to have its distance measured in 1838 by F.W.Bessel. Only 10.4 light years away. Both stars are cool, orange dwarfs with magnitudes 5.2 and 6.1.

Eta Cassiopeiae: A bit more challenging to locate in the strongest twilight coming from low in the northeast. Easily split at 81x, presenting as orange and red (magnitudes 3.5 & 7.5, respectively). These constitute a true binary system, with a period of about 480 years.

A quick peek at a more difficult pair:

Pi Aquilae: Once again, beautiful and easy to resolve in the 5.1” reflector at 243x. I have been observing this system for five years now, with various instruments. My notes from the end of July 2011 showed that it was very difficult with a high-quality 4” f/15 classical refractor, the twilight making it challenging. Observations made with variety of 5” refractors over the same period – and also in summer twilight –  show that it is not difficult in these sized instruments (only anomaly recorded in an optically so-so 6” f/8 speculum used for outreach also from 2011, where it was relatively poorly seen).  In the absence of a good 4” refractor at present, this provides good evidence that the 130mm reflector is indeed operating closer to the performance of a 5” glass than a 4” glass, which is very encouraging.

Before leaving the field, I spotted Saturn below the tree line in the south, so I decided to uplift the telescope on its Porta II mount and walk about a hundred yards to a grassy spot at the local primary school grounds, where I could better aim the telescope. Despite its very low altitude, it was a beautiful sight at ~150x, it glorious ring system now wide open for business. Cassini Division seen, as well as some banding on the Saturnian globe.

Vicious midge flies making any further observations uncomfortable, the vigil was aborted shortly before 1 AM local time.

Date: 08.06.16

Time: 23:00-30 UT

Seeing: II, good and stable, variable amounts of thin cloud, twilit.

Temperature: +10C

Polaris: Always a lovely system to study, even in the twilight. In the telescope at 108x, the 2nd magnitude primary (Polaris A) presents as a beautiful creamy white, the secondary a haunting bluish grey some 6 magnitudes fainter seen in the 10 o’ clock position in the 130mm Newtonian. A third companion lies much closer to Polaris A but is woefully beyond the powers of any backyard telescope to resolve. Interestingly, all three stars in this system, located about 430 light years away, are of the F spectral class, and thus should present with the same colours. This is readily seen with Polaris A but the exceeding faintness of the Polaris B hides its true colour. Polaris B orbits A at a distance of about 2400 further out than the Earth-Sun distance, taking over 400 centuries to complete a single lap.  Polaris A is a giant, pulsating star, part of a class known as Cepheids. With such stars, humans have been able to extend the plumbline of their reach into the realm of the galaxies. Stars like Polaris A have helped us gain a truer sense of the vastness of the Universe in which we miraculously inhabit. These are some of the things I like to ponder on, whilst spying the Pole Star.

16 Cygni: A fourth magnitude system a little to the northeast of the lovely red variable star R Cygni. In the 130mm f/5 at 81x, the decent light gathering power of the instrument presents the pair  in their natural colours: a yellow primary (magnitude 4) and golden secondary (magnitude 6), separated by about 40 arc seconds of sky.

Eta Lyrae: Located a few telescopic fields east of Vega, this is normally a very easy system to crack at low powers (~40x) with a magnitude 4.4 blue-white primary and 9th magnitude secondary wide away. In the twilight, I find a higher power of 108x is needed to see the faint secondary well, and is even better presented again at 150x. Much more gloriously presented from a truly dark sky.

Date: 17.06.16

Time: 22:30-59 UT

Temperature: +7.5C

Seeing: II-III, clear, twilit, bright waxing gibbous Moon culminating in the south. Evening made especially pleasant by the absence of midge flies, which don’t like temperatures below 10C.

After over a week long hiatus in the weather, which brought endless cloud and some rain, the sky finally cleared up this evening, allowing me to resume my adventures with my 130mm f/5 Newtonian.

Two reasonably challenging doubles to start with:

Epsilon Bootis: beautifully sharp and well resolved at 195x

Delta Cygni: Ditto @195x; always a joy to observe this system so well.

Iota Bootis: A wonderful low power system, located about 4 degrees northeast of Alkaid (at the tip of the handle of the Ploughshare). At 81x, the system was beautifully framed  and showed a yellowish primary(magnitude +4.8) well separated from a bluish secondary,  some three magnitudes fainter (+7.5). Very fetching colour contrast in the Newtonian!

95 Herculis: Found by panning some 10 degrees east of Delta Herculis. To my eyes, this nearly equal magnitude pairing(4.9/5.2) has a very subtle colour contrast: one appears silvery, the other creamy white. Easily resolved at 81x. Consulting my old Burnham’s Celestial Handbook Vol 2, there is an interesting discussion on the historical colour presentation of this pair, especially from some eccentric 19th century observers!

What colours do you see?

How wonderful it is to get outside on this beautiful mid-summer evening!

Date: 18.06.16

Time: 22:30 UT

Temperature: +10C

Seeing: II, some hazy cloud, bright Moon in south.

Epsilon 1 & 2 Lyrae: Textbook perfect split of all four components at 243x

Delta 1 & 2 Lyrae:  Easily found in the low power (20x) field of my 32mm SkyWatcher Plossl, just a few degrees to the east of Vega. No need for higher power with this system; lovely colour contrast – red and blue-white. Stars physically unrelated i.e an optical double.

SHJ 282: Seen in the same lower power field of Beta Lyrae, some 1 degree to its northeast. Under darker skies, it forms a wonderful sight in the 2.5 degree field of the 32mm Plossl, together with the celebrated Ring Nebula (M57). At 41x, this comely system (actually triple) looks like a copy of Albireo; an aureal primary well separated from its pale blue secondary.

Date: 27.06.16

Time: 22:45-23:10UT

Temperature: +10C

Seeing: II, very good, partially clear, beautiful noctilucent clouds in the northeast, fresh westerly breeze, nae midgees.

The weather has been quite unsettled of late, with little in the way of clear skies, but this evening I grabbed an opportunity with both hands and fielded my bonnie 130mm Newtonian.

A number of systems visited this evening including:

Delta Cygni: wonderful split and (as usual) easily resolved at 243x. Lovely round stars well separated in the twilight.

Epsilon 1 & 2 Lyrae: Textbook perfect at 243x

Epsilon Bootis: Very easy for this telescope, as I have found on many occasions now. Lovely colour contrast at 243x

Pi Aquilae: Better positioned these days. Easily split at 243x

11 Aquilae: Found by centering Zeta Aquilae in the low power (20x) field. 6th magnitude 11 Aq lies just one degree or so to its west. At powers up to 100x or so, only the white 6th magnitude primary is visible, but when the power is cranked up beyond about 150x, the much fainter 9th magnitude companion was observed wide away. Reasonable concentration is required to tease this out of the twilight. Once picked off, the greyish companion was better seen at higher powers (243x). This system is far more glorious in a fully dark sky, and I shall look forward to visiting it again in August.

All in all, a grand half hour under a Scottish summer sky. My little Newtonian reflector is most assuredly a proficient double star telescope. The unbridled joy of discovery!

Date: 29.06.16

Time: 22:45-23:20 UT

Seeing: Excellent, I-II, gentle breeze, very little cloud, twilit.

Temperature: +8.5C

After assessing the seeing in the 130mm Newtonian and judging it fine ( as evidenced by cleanly splitting Delta Cygni at 243x), I fielded my 8-inch f/6 Newtonian and turned it on Lambda Cygni, now considerably higher in the sky and applied a power of 450x. I also employed a Baader single polarising filter, which helped to reduce glare and darken the sky. I could indeed see the companion to the primary star intermittently and oriented north to south. And during the better moments I could see that it was clearly disembodied from the primary. I then turned the 130mm on the same system, employing a power of 365x with the polarising filter. Letting the image settle down as it moved across the field, I observed good elongation in the same orientation, but no separation.

This was a most exciting and encouraging vigil, the first of many more I hope.

Date: 01.07.16

Time:22:50-23:40 UT

Temperature: +7C

Seeing: II, good clear spells, some cloud, westerly gusts, cold, twilit.

After a day of heavy and frequent rain showers, I enjoyed a short clear spell around midnight.

Iota Cassiopeiae: Fairly tricky to track down in twilight, but was rewarded with a lovely clean split of this picturesque triple star system at 243x.

Eta Cassiopeiae: Picturesque colour contrast pair (A/B orange and yellow). Easy to split at powers at ~100x.

Sigma Cassiopeiaie: located a few degrees southwest of the easternmost star in the constellation ( Beta), this is a wonderful target for small telescopes. It consists of two blue-white stars separated by about 3.2″. The primary shines with magnitude 5.0 and the secondary, 7.2. Best seen at magnifications > 150x.

Delta Cephei: Beautiful and easy with the 130mm Newtonian. The stars appeared pure white and easily resolved even at low power but nicely framed at 81x. The primary is actually another Cepheid variable (described above in relation to Polaris).

Two tighter test systems visited:

Delta Cygni: good clean split at 243x

Epsilon Bootis: ditto at 243x

Date: 05.07.16

Time: 23:05-30UT

Seeing: III-IV, below average seeing, partially cloudy.

Temperature: +8C

Fairly choppy seeing this evening, as evidenced by somewhat bloated stellar seeing disks observed with the 130mm f/5 Newtonian.

Delta Cygni: barely resolved at 243x

Epsilon Bootis: split but not cleanly at 180x

Xi Bootis: yellow and orange pairing, easily resolved (6.4″) at 150x

Pi Bootis: Blue and yellow components, easily resolved (5.6″) at 150x

Zeta Coronae Borealis: Lovely yellow and blue-green components easily resolved (6″) at 150x

Mu Bootis (Alkalurops): All three components resolved easily with the 130mm Newtonian at 243x. System previously visited on May 12 last. The two seventh magnitude stars (B/C) were surprisingly well split (~2″), a consequence I suppose of their low brightness which curtails the size of their seeing disks. Fainter pairs seem less susceptible to seeing conditions.

Date: 08.07.16

Time: 22:40-23:00 UT

Temperature: +12C

Seeing: III-IV, remaining turbulent, mostly cloudy.

Further trials with the 130mm f/5 Newtonian.

Delta Cygni : unresolved at 183x

Epsilon 1&2 Lyrae: resolved at 183x

Cor Caroli: very pretty at 63x

Date: 11.07.16

Time: 22:45- 23:00 UT

Temperature: +13C

Seeing: III-IV, very turbulent mostly cloudy, a few suckerholes appearing here and there.

Two instruments fielded this evening; a 130mm f/5 Newtonian and a 90mm f/5.5 apochromatic refractor (price now hiked up to £1017?! i.e. fourth successive hike since review)

Epsilon Bootis (Izar): Companion resolved reasonably well with 130mm  reflector but very poorly (if at all) with 90mm refractor at comparable magnifications i.e.~180x. Quite revealing really!

Mission aborted owing to light drizzle.

Date: 12.07.16

Time: 22:30-23:00 UT

Seeing: III, partially clear, cool, twilit.

Temperature: +10C

The conditions were slightly improved over last night. I fielded the 130mm f/5  Newtonian again and examined the following systems. I employed a single polarising filter which does a very good job removing some glare and improving the aesthetic of the stellar images, especially in twilight.

Epsilon 1&2 Lyrae: easily split at 181x.

Epsilon Bootis: well split at 180x

Delta Cygni: good split at 180x and 243x

Low down in the east, I visited Delphinus for the first time this season.

Gamma Delphini: A corker at 181x! Located some 100 light years from the Solar System, the primary(magnitude +4.4) shines with a lovely marmalade orange hue, while the secondary (magnitude 5.0) shows up as lime-like. 9 arc seconds separates them.

Struve 2725: Seen in the same high power field as Gamma Delphini, this fainter system can be seen a little to the southwest of Gamma. This pair is a bit more challenging to spot, the primary and secondary having magnitudes of 7.5 and 8.4 respectively and orientated north to south. To my eye they both look white and are separated by 6″.

No’ bad innings for an average July evening, ken.

Date: 13.07.16

Time: 22:30-23:00 UT

Seeing: II-III, an improving picture, though not where I would like it to be. Partially cloudy, twilit.

Temperature: +10C

Systems visited this evening with the 130mm f/5 Newtonian (with single polarising filter) included:

Delta Cygni: well split at 181x

Iota Cassiopeiae: A beautiful, delicate triple system, well resolved at 181x but more compelling to behold at 243x

After spending about five minutes admiring the comely, sanguine Garnet Star (Mu Cephei), I move the instrument a little to its southwest until I arrived at a field of view containing two other stellar systems of interest:

Struve 2816: A magnificent triple system (actually quadruple). All three stars are arranged in a line running roughly northwest to southeast. A/B looks yellow to the eye (magnitude +5.6) with two equally bright stars (C and D), located 12″ and ~20″ away from the primary, respectively. A grand sight at 181x.

Struve: 2819: Just off to the northwest of Struve 2816, this is a fainter system requiring high powers to see well. Both stars appear white to the eye. The primary is magnitude + 7.4 and has a fainter companion (magnitude +8.5) ~13″ off to its northeast. Best seen at 243x.

Very much looking forward to darker and more stable skies coming back in a few more weeks.

Date: 18.07.16

Time: 22:20-30 UT

Seeing: sultry, clouded out, midge flies by the legion, twilit.

Temperature: +18C

Poodle versus Plotina

Lens versus Speculum.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I was hoping to get some observing done this evening, as the forecast looked reasonably promising after a long spell of very unseasonal weather (The Open at Troon sure wasn’t pretty lol). I have not been able to make any additional progress beyond what I’ve recorded but having been at this a few months now and having seen what I’ve seen, my conclusions are as follows;

The modified 130mm f/5 appears to be an excellent double star instrument! This came as a quite a surprise to me, as I was not entirely prepared for what it could deliver given its very modest cost. All of this can be tested, of course, and I’d warmly encourage you to have a go.

The instrument will comfortably outperform any 90-100mm refractor given a fair trial (proper acclimation, optical train alignment, reasonable to good seeing conditions, etc.). It is especially adept at resolving close, fainter pairs of roughly equal brightness.

Millimetre for millimetre, its performance in comparison to a refractor of equal aperture is much closer than is commonly reported (or commonly believed), though I would concede that the refractor will have an edge when pushed to the limits*.

*Valid only over the aperture ranges studied.

My conclusions are fully in agreement with the comments made by W.F. Denning (1891), reproduced above.

I will continue to monitor these and other double stars, God willing, in the coming months and years and will report back in due course.

It has been an absolute pleasure discovering the many charms of this little Newtonian. As telescopes go, there is something very endearing about their ingenious simplicity, and given half a chance, they can show you remarkable things.

As I write this, there are more encouraging signs that the prejudice traditionally attributed to Newtonians for this kind of work is being lifted and that is great to see! Just have a look at the CN Double Star forum to see some examples. I believe much of this prejudice is/has been due to the usual suspects: laziness, lack of interest, somewhat irrational, material attachment to other kinds of telescopes, and the like. You see, you don’t need a big vainglorious refractor (I should know, I’ve got one lol) to do this kind of work, and dare I say, one can actually derive a greater level of satisfaction achieving goals with these modest instruments over more traditional ones. You begin to see the hobby in a whole new light.

Thank you for following this blog.

Clear Skies!

Neil.

Updates

Date: August 17, 2016

Time: 00:05h BST

Seeing: Excellent: I, excellent definition, fairly bright sky owing to very late gibbous Moon low in the south, gentle westerly breeze.

Temperature: +12C

Instruments: 203mm f/6 & 130mm f/5 Newtonians, Baader single polariser.

Observation: The 8-inch reflector easily resolved Lambda Cygni B (0.9″), clearly seen at 450x and orientated at right angles to the direction of drift (E-W). Both components presenting as perfectly round and clean white. Deeply impressive!

The 130mm f/5 showed the system as plainly and strongly elongated N-S, power employed x325. Careful attention to accurate collimation necessary. Best evidence for the appearance of duplicity thus far recorded with this instrument.

Date: August 28 2016

Time: 23:10 BST

Seeing: Excellent (I), a bonnie evening, very steady, no clouds, no Moon, cool.

Temperature: +10C

Instruments: 203mm f/6 and 130mm f/5 Newtonian reflectors, Baader single polariser.

After obtaining an excellent high power split of delta Cygni & pi Aquilae with both instruments, I turned the telescopes toward lambda Cygni. The 8-inch served up another clear split of the 0.9″ B component at 450 diameters, just like the evening of August 17. The 130mm, once again showed strong elongation (north to south orientation) at 325x and 406x, but was not split.

 

De Fideli.