Book Review: “Improbable Planet” by Hugh Ross.

A Fresh Look at our World.

For He did not subject to angels the world to come, concerning which we are speaking. But one has testified somewhere, saying,

What is man, that You remember him?
Or the son of man, that You are concerned about him?
You have made him for a little while lower than the angels;
You have crowned him with glory and honor,
And have appointed him over the works of Your hands;
You have put all things in subjection under his feet.”

For in subjecting all things to him, He left nothing that is not subject to him. But now we do not yet see all things subjected to him.

                                                                                                       Hebrews 2: 5-8

 

Title: Improbable Planet: How Earth Became Humanity’s Home (2016)

Author: Hugh Ross

Publisher: Baker Books

ISBN: 9780801016899

Price: £12.99 (paperback) pp 283

I love my long summer vacations after another year of intense teaching, from mid-May to late August. I get to do lots of things around the house.

Recently I decided that it was high time to re-organize some of the books in my library. So I went ahead and removed all the titles by Carl Sagan, Charles Darwin, Richard Dawkins, Stephen J. Gould, Richard Fortey, Frank Drake, Seth Shostak, Richard Leakey, Jacob Bronowski and a few others, and re-shelved them in my newly enlarged fiction section.

“Heresy!” I hear you shout. Well, after reading this new book, Improbable Planet, by astronomer and Christian apologist, Hugh Ross, I was compelled to do so. Ross is no scientific shrinking violet. Holding a bachelors degree in physics from the University of British Columbia and a Ph.D in astronomy from the University of Toronto, Ross also carried out post-doctoral research on quasars at Caltech before his Christian faith led him to begin a ministry that seeks to show the harmony between science and faith; a worldview informed from the idea that the Creator provided not one, but two revelatory books; Scripture and Nature. In 1987, he founded his organisation, Reasons to Believe(RTB), in southern California, which has grown in size and influence, helping thousands of thoughtful people make the transition from unbelief to belief. Not only does RTB address astronomical topics, his team now includes PhD-trained scientists in molecular biology, chemistry and physics, as well as a number of highly trained philosophers and theologians. Ross has also built up a huge ‘extended family’ of like-minded people, not just from the sciences and medicine, but the wider community in general, which you can find in presentations of their testimonies on the RTB website.

The thesis of Dr. Ross’ book is this: far from being an ordinary planet orbiting an ordinary star in an undistinguished planetary system, lost in an obscure part of a typical galaxy adrift in a vast sea of other like galaxies, the Earth was the location of an extraordinary chain of events that took place over the aeons, where a super-intelligent agency (which he identifies as Jesus Christ), prepared our planet for its eventual seeding by human beings for the purposes of redeeming billions of souls – a sizeable minority of all the humans that have ever walked the face of the Earth. In support of these claims, Ross calls on an enormous body of scientific evidence from the fields of astronomy, cosmology, planetary science, paleontology, geology and biology to make his case.

Of course, for some, the fact that Ross identifies as a Christian is a complete showstopper. That’s unfortunate, as many will dismiss the book simply based on the man’s spiritual beliefs, but that’s a terrible argument from ignorance; no different in essence from any other kind of bigotry. But rest assured, if you enjoy science, once you settle into the work, you’ll soon appreciate how compelling his arguments are.

Ross can best be described as an Old Earth Creationist, by which I mean, he accepts the consensus view in the scientific community that the Earth and the Universe in which we find ourselves in is old. But not all OECs believe in all the same things. He defends hot big bang cosmology as the origin of space-time and all the matter and energy it contains. He believes that stars and planets evolve over time, citing a huge body of evidence in support of his beliefs. What you won’t find in this book however, is support for biological (read Darwinian) evolution. A long-time sceptic of the evolutionary paradigm, his highly trained team has expertly critiqued the ‘wooly’ scientific claims of its adherants. Now that Neo-Darwinian evolution is coming away at the seams, with an army of biologists now abandoning it by the droves, his long-held and deeply entrenched scepticism of this so-called ‘science’ has been fully vindicated.

Sadly, Ross has endured criticisms, not so much from secular scientists, who largerly respect his work, but from other Christians who hold to a Young Earth Creationist(YEC) perspective, that is, the Earth and the Universe around us are only 6,000 years old. And some YECs have acted very aggressively toward his apologetics. This is also unfortunate, since the age of the Earth is not an issue that Christians should divide over. In truth, both groups have much more in common than they have differences. Indeed, it matters not whether the Earth is 6,000 years old or billions of years old; nature alone will never produce something as complex as a living system in either scheme. Fortunately, his gentle demeanour has won over many YECs over the years and gained the admiration of still more.

That said, there will always be diehard YECs….and that’s OK.

…………………………………………………………………………………………………………………………….

An interesting aside:

Dr. Ross presents some very intriguing facts about the demography of the human race over time. Consider this data found on page 229:

Date  (AD)                          # of Non-Christians per Christian

100                                            360

1000                                          220

1500                                            69

1900                                            27

1950                                             22

1980                                             11

1990                                               7

I suppose we could add a data point for today’s world as well; 3.57

……………………………………………………………………………………………………………………………..

A fresh interpretation of the facts:

The opening chapters of the book assesses the big scientific picture; we live on the outskirts of an unusually large and symmetric barred spiral galaxy, our solar system orbiting the Milky Way galaxy about 26,000 light years form the centre. But astronomers have discovered that the location of our solar system lies just inside the edge of the so-called co-rotation axis of the galaxy, where stars orbit at the same speed as the nearby spiral arms. This is highly fortuitous, Ross argues, as it largely prevents the solar system from entering and leaving spiral arms which would likely have severely disrupted any life that would have developed on the planet. But we know that the solar system very likely did not form where it is located today. The evidence suggests that the unsually high metallicity of the Earth and the solar system at large, points to a location of origin much closer to the galactic centre, where the abundance of such metals are much higher than at the co-rotation axis.

Nota bene: Astronomers refer to all elements heavier than hydogen, helium and lithium as ‘metals’. Such metals were forged inside ancient stars and released to the interstellar medium when they die, either as planetary nebulae or in cataclysmic supernovae events. The incidence of the latter was much higher nearer the galactic centre where the densities of stars was considerably higher than it is at our present location. Indeed stellar metallicty peaks about 50 per closer to the galactic centre than it does at our present orbital radius.

A detailed analysis of the solar system’s elemental abundance strongly suggests that it was enriched by a number of different supernovae explosions(including a very rare type) that enriched it with unsually high levels of heavy elements, particualrly long-lived radionuclides such as uranium and thorium but also short lived species like aluminium 26. This is clearly seen in the abundance of aluminium in the Earth’s crust which comes in at about 8.1 per cent as opposed to the 0.01 per cent for the Universe at large. The rapid decay of these relatively huge quantities of radioactive aluminium released a great deal of heat which helped purge our neonatal solar system of much of the volatile material it would have otherwise ended up with. Our Sun is also anamolous in its oscillatory motion above and below the mid-plane of the Milky Way. Stars in the solar neighbourhood oscillate at right angles to the galactic plane with an amplitude of about 400 light years. In contrast, the Sun exhibits an oscillatory amplitude about half of this value, protecting it from being excessively bathed in galactic radiation, which would have also destroyed the ozone layer, resulting with an increased UV irradiance upon the Earth, scuppering future land life.

The Moon-forming event is discussed in detail, where a Mars-sized object(nicknamed Theia) collided with the neonatal Earth sometime between 50 and 100 million years after our world formed by accretion of material from the solar nebula. Ross explains that this has caused quite a bit of ‘philosophic disquiet’ among some of leading researchers in the field:

The cover article for the December 5, 2013, issue of Nature reported Canup’s concern that “current theories on the formation of the Moon owe too much to cosmic coincidences.”

pp 54

In any event, the collision produced a Moon with sufficient mass to stablise the Earth’s rotation tilt axis, protecting our planet from rapid and extreme climatic variations. Over the aeons, our Moon has gradually recessed from the Earth, slowing its rotation rate to a life-sustaining level. The Moon-forming event further removed large quantities of volatiles from the primordial Earth, preventing it from outgassing enormous quantities of water vapour which would have caused our world to end up with a choking global ocean hundreds of kilometres deep, prevening the formation of continents required for efficient re-cycling of nutrients necessary for all life.

Chapter 6 describes the dynamical history of the planets in our solar system, particualrly the formation of the asteroid belt and the ‘grand tack’ migrations of Jupiter from its rapid formation beyond the snow line of the solar system, followed by its migration inward before moving back out from the Sun to its present stable position. Indeed, the Sun’s family of planets and their positioning is unlike any exoplanetary system thus far characterised.

Chapter 7 provides a fascinating overview of the concept of a habitable zone but takes it far beyond what most science writers are willing to consider. Most of us, for example, are familiar with the water habitable zone; that annulus around a star where temperatures allow a planet to maintain liquid water over geological timescales. Ross takes this concept to a whole new level though, describing not one, but a further seven other zones that must be set in place to allow life to flourish on Earth. These include:

  1. The Ultraviolet habitable zone
  2. Photosynthesis habitable zone
  3. Ozone habitable zone
  4. Rotation rate habitable zone
  5. Obliquity habitable zone
  6. Tidal habitable zone
  7. Astrospheric habitable zone

Without revealing too much in the way of details, Ross writes concerning the UV habitable zone:

The fact that the liquid water and UV habitable zones must overlap for the sake of life eliminates most planetary systems as possible candidates for hosting life. This requirement effectively rules out all M dwarf and most K dwarf stars, as well as O-, B- and A- stars. All that remain are F-type stars much younger than the Sun, G-type stars no older than the Sun, and a small fraction of the K dwarf stars. As  described in chapter 5, only stars at a certain distance from the galactic core can be considered candidates for life support. In the Milky Way Galaxy, some 75 per cent of all stars residing at this appropriate-for-life-distance are older than the Sun. Once these and other non-candidate stars are ruled out, only 3 per cent of all stars in our galaxy remain as possible hosts for planets on which primitive life could briefly survive.

pp 85

Chapter 8 is particularly meaty from a scientific perspective, as it is in this chapter that Ross lends his decades-long studies to the thorny issue of how life appeared on Earth. He writes:

More than a decade ago, evidence indicated that the origin of life occurred within an immeasurably brief time span. The late heavy bombardment (LHB) raised the temperature of the entire planetary surface so high as to evaporate all its water and melt all its rocks. Then, according to multiple isotopic studies, just as soon as the surface temperature cooled enough for the possibility of life’s existence, life appeared. This evidence prompted paleontologist Niles Eldredge to comment, “One of the most arresting facts that I have ever learned is that life goes back as far in Earth history as we can possibly trace it…..In the very oldest rocks that stand a chance of showing signs of life, we find those signs.”

pp 97

That the Earth had life as soon as conditions were cool enough to accommodate them  seems inescapable, and Ross quotes numerous studies recently(as in the last decade) conducted on ancient zircon minerals, graphitic carbon, and metamorphosed shale that clearly show that a complex biosphere was already established as early as 3.8 billion years ago. The ‘smoking gun’ to this complex origin of life may, according to Ross, come from the isotopic signature of photosynthetic life as early as 3.7 billion years ago. He writes:

Another research team found that the carbon isotope signature of planktonic oragnisms in metamorphosed shale dating to 3.7 bliion+ year ago. In the same shale they measured a high ratio of uranium to thorium. This finding indicated a sequence whereby organic debris produced by a local reducing environment that precipitated uranium deposited in the shale sediment by oxidized ocean water. The presence of this oxidised water implies that oxygenic photosynthetic life was abundant prior to 3.7 billion years ago. Given that the simplest oxygenic photosynthetic bacteria contain over 2,000 gene products, this finding suggests that highly complex unicellular life already existed sometime before that date.

pp 98-99

How this complex cellular biochemistry originated so early completely eludes an evolutionary mechanism. It is simply incredulous that such complex cellular life could could come into being by a blind(by necessity) Darwinian process in such a short a time window. Indeed, more and more studies are revealing the same pattern: life began complex.

…………………………………………………………………………………………………………………………….

Another curious  aside: What’s the status of prebiotic chemical research?

Even the first chemical steps towards life require an in-ordinate amount of human ingenuity(read intelligent design or foresight). That much was recently admitted by a high-ranking  German prebiotic chemist in a leading scientific journal. Other heavy weights in the field have also waded into this debate, including Professor James Tour (who favourably reviewed an earlier draft of Ross’ book), who has exposed the scale of ignorance exhibited by educators towards this intractable scientific problem. Furthermore a credible source(terrestrial or extraterrestrial)  of homochiral enantiomers of sugars and amino acids needed to build the first cells has not yet been identified. Indeed the origin of life is the oustanding scientific problem of our generation and will likely remain so for many decades, if not centuries to come.

Much of this is not reported in the popular science periodicals, so readers beware!

……………………………………………………………………………………………………………………………..

 

Many people think it reasonable to believe in some vague evolutionary sequence of events simply by noting that the first lifeforms were microbes with multi-cellular organisms following them before the most complex creatures of all appeared; vascular plants and animals. But Ross entertains an entirely novel idea; the reason why life started out with microbes before introducing more complex life has nothing to do with evolution; more specifically he notes that the environment of the early Earth was very hostile to life, with large swings in temperature and pH, very high concentrations of unprocessed vital poisons** and with radiation levels(from the decay of radioactive atoms) five times higher than exist today. The reason why life started with microbes is that they are much hardier than more complex life (eukaryotes and muti-cellular lifeforms). Indeed, Ross points out that these biochemically sophisticated microbial species removed large amounts of vital poisons from the environment turning many of them into ores (many of which are now used by humanity in high technology devices).

………………………………………………………………………………………………………………………………

**

What are vital poisons?

Vital posons are elements that are toxic if ingested at too high concentrations but are needed at specified low concentrations in body tissues to enable life processes to be maintained. Such elements include boron, fluorine, iron, sodium, magnesium, phosphorus, sulphur, chromium, manganese, copper, zinc, iodine, molybdenum, cobalt and nickel etc.

……………………………………………………………………………………………………………………………..

Thus, in this scheme of events, the Creator put these microbes to work as early as possible to terraform (my own terminology) the Earth’s earliest environments, clearing it of solubilised toxins which was necessary before eukaryotic and multicellular life-forms could be introduced!

In chapter 9, Ross provides an excellent overview of how primitive life functioned in maintaining the large-scale geologic health of our planet, particularly in playing a starring role in stimulating long-lived plate tectonic activity:

In 2015, two geophysicists, Eugene Grosch and Robert Hazen, noted that the subsurface fluid-rock microbe interactions could result in more efficient hydration of the early Earth’s  oceanic crust. This hydration would promote bulk melting leading to the production of felsic crust( igneous rocks rich in feldspar and quartz), which, being lighter than basaltic crust, in turn would generate microcontinents. That is, Earth’s first microbes, by faciliating extensive hydrothermal alteration of ocean floors, yielded extensive mineral diversification that soon resulted in the formation of several microcontinents.

pp 111

 

What is more, as life began to gorge on the minerals formed in Earth’s early crust, it accelerated its weathering, which in turn fed the resulting sediments into subduction zones, thereby stimulating still greater tectonic activity. This was vitally important for Earth’s future history, as the decline in long-lived radioisotopes over time might not have generated the required levels of thermal energy needed to keep the crust in a pliable state needed to build the large continents our planet would end up having. In addition, the early introduction of global  oxygenic photosynthesis drew large amounts of carbon dioxide from the atmosphere to compensate for a steadily brightening Sun. What Ross makes clear is that without the early introduction of life on Earth, this planet would most likely be sterile or nearly so, by now.

……………………………………………………………………………………………………………………..

Yet another curious aside:

Our world is richly endowed with minerals. Indeed, compared with Mars and Venus, which have an estimated 500 and 1000 different types of minerals, respectively, Earth is lavished with over 4,600 known mineral varieties, many of which required the active presence of living systems to create them! See Robert Hazen’s 2013 book, The Story of Earth, for further details.

……………………………………………………………………………………………………………………………….

As described in chapter 11, ongoing plate tectonic activity resulted in the formation of virtually all of Earth’s continental land mass by about 2.5 billion years ago, resulting in 29 per cent of our planet’s surface area being covered by dry land above sea level. To most onlookers, a value of 29 per cent seems somewhat arbitrary, but in fact, it may be highly fine-tuned. Greater land surface areas would induce too little precipitation in the interior of those ancient continents, preventing life from gaining a foothold in these places. On the other hand, land areas significantly less than 29 per cent would not be able to re-cycle enough valuable nutrients between the land, the sea and the atmosphere to maintain a healthy biosphere.

Chapter 13 & 14 of Improbable Planet discuss the significance of the many mass extinction events in Earth history with forensic detail. Again, at first glance, this might indicate that the cause of life on Earth has no author, but Ross begs to differ. Indeed, he suggests that the sporadic cycles of extirpation followed by rapid recovery of the biosphere with new forms of life achieved two aims;

1. The remains of these ancient life-forms yielded massive amounts of new biodeposits that would be used by humanity to launch a global civilization( think of how fossil fuels led to the Industrial Revolution, for example).

2. The lifeforms that replaced those that went extinct were more efficient collectively at drawing more greenhouse gases out of the Earth’s atmosphere, thereby compensating for the greater heating effects of an ever-brightening Sun.

…………………………………………………………………………………………………………………………….

A Question for your consideration: If God designed life so that it could evolve from one kind into another, then why does Earth history reveal so many mass extinction events? Why would He bother?

……………………………………………………………………………………………………………………………….

 

Ross calls on the second revelatory book of Scripture to advance his claims. Consider the words of the Psalmist of old:

These all wait for You,
That You may give them their food in due season.
What You give them they gather in;
You open Your hand, they are filled with good.
You hide Your face, they are troubled;
You take away their breath, they die and return to their dust.
You send forth Your Spirit, they are created;
And You renew the face of the earth.

Psalm 104: 27-30

Intriguingly, the fossil record agrees with the creation and extinction events discussed in Psalm 104 but, significantly, does not support a gradualistic scheme long envisaged by evolutionists.  Accordingly Ross takes his trained scientific eye and applies this to the study of the most famous explosive events in the history of life on Earth; the Avalon (574 -543 Million years ago) and Cambrian Explosions (543-533 Million years ago), the latter of which led to the sudden emergence of some 80 per cent of all existing animal body plans without any credible evolutionary antecedents! Perectly formed eyes, brains, nervous systems, skeletal systems etc, appearing as if out of nowhere.

Ross discusses the sense of bewilderment expressed by paleontologists seeking to provide an evolutionary explanation for these quantum leaps in biology, which are outlined in pages 172 to 179, quoting some leading researchers in the field, and in particular the utter failure of molecular clocks to keep pace with all the innovations wrought by these  explosive events in the history of life.

…………………………………………………………………………………………………………………….

Some further reading on the Cambrian Explosion: I would highly recommend readers  consult and study Stephen C. Meyer’s New York Times best-selling book Darwin’s Doubt: The Explosive Origin of Animal Life and the Case for Intelligent Design(2013). Concerning this book, paleontologist Dr. Mark McMenamin(Mt. Holyoke College) said:

It is hard for us paleontologists, steeped as we are in a tradition of Darwinian analysis, to admit that neo-Darwinian explanations for the Cambrian explosion have failed miserably. New data acquired in recent years, instead of solving Darwin’s dilemma, have rather made it worse. Meyer describes the dimensions of the problem with clarity and precision. His book is a game changer for the study of evolution and points us in the right direction as we seek a new theory for the origin of amimals.

……………………………………………………………………………………………………………………………..

In the final few chapters of the book, Ross outlines an extraordinary sequence of events involving continental breakup, mountain formation, ocean current changes, and ice ages that prepared our planet for the arrival of the pinnacle of God’s creation; humans. He notes that mankind’s appearance coincided with a time when solar activity flaring was at its lowest and solar luminosity (the Sudbury study) reached its greatest stability. Putting it all together he writes:

Is it mere coincidence that our one-of-a-kind long cool summer occurs simultaneously with the following unique events: (1) The Sun becomes exceptionally stable in luminosity, with minimal flaring and ultraviolet and X-ray radiation; (2) no nearby supernova eruptions occur: (3) maximization of the diversity and abundance of life on Earth; (4) various habitable zone windows align perfectly; and (5) many other coincidences described in these pages all come together? Not likely. These amazingly arranged features should give us pause to consider the meaning of our human existence.

pp 218-19

The final chapter reveals the spiritual reasons for human existence as outlined in the pages of the Bible. The enormous body of scientific ‘coincidences’ that Ross presents make it very clear that God deliberately and painstakingly prepared the Earth for humans and that our existence is truly a miracle. That said, these conditions cannot persist indefinitely. We are living in a very narrow window of time in which all these factors work optimally. The story Ross weaves makes it very unlikely that other lifeforms will exist elsewhere in the Universe, as many other scientific authorities in the field are now beginning to concede, and certainly nothing like human beings, but he does point out that we are not alone. The God of the Bible created a host of angelic creatures, the majority of which remained loyal to their Maker and have some capacity to interact with humans. It’s up to each and every one of us to accept Christ’s offer of redemption with exigency or suffer the eternal consequences.

I will leave you with the words of Professor James Tour concerning this wonderful book:

“In Improbable Planet, Ross holds the readers’ hand, leading them in a readable yet gently technical format through a compelling layer-upon-layer argument for the distinctiveness of the planet on which we live and of the preparation for inimitable life on Earth. The text is replete witth references from primary scientific articles in some of the most well-respected journals, underscoring the highest academic rigor taken in substantiating the factual claims. Only the shamefully flippant could dismiss this book as being a faith-filled presentation rather than the scholarly work it represents.”

I wholeheartedly agree!

 

Dr. Neil English is the author of a large(650+ pages) historical work, Chronicling the Golden Age of Astronomy, recently published by Springer-Nature.

 

 De Fideli.

Book Review: “Lucky Planet” by David Waltham.

A refreshing look at a thorny ‘scientific’ question.

Book Title: Lucky Planet

Author: David Waltham

Publisher: ICON Books

ISBN: 978-1-84831-832-8

Year of Publication: 2014

Price: £9.99(UK) Paperback(225 pages)

If you are a regular reader of the popular periodicals such as Sky & Telescope, Astronomy, Astronomy Now, BBC Sky at Night Magazine, Scientific American, etc you’re sure to notice that any articles discussing life on other worlds invariably paint a picture that life is commonplace in the Universe and will be found in many different exoplanetary environments. Very rarely(if ever), will they present articles arguing the opposite; that life in general, and intelligent life in particular, will be rare or even unique to the Earth. The reasons for this bias are many and varied but some of the most important reasons include; (1) the motivations of their authors to promote their own work in astrobiology,(2) to extend methodological naturalism to the Univese as a whole and (3) to dispell the notion that we might in any way be special.

The problem with this approach is that it is not presented in the true spirit of scientific enquiry, which seeks to find truthful answers to big questions. Thus, more often than not, the inability of these periodicals to publish scientific findings that challenge or counter their philosophic positions simply reflects the ingrained prejudice of its editorial.

I encountered this prejudice directly in a recent exchange with the editor of Astronomy Now, a magazine that I have faithfully written for for 25 years. When I wanted to write an article discussing the idea that extra-terrestrial life could be rare, citing many up-to-date scientific articles on the subject, the editor turned sour and refused to publish the work. The reason: nothing to do with science, he just didn’t like what I was reporting! A classic case of bigotry methinks. Anyway, we forgive and forget, then move on. So I decided to take my work elsewhere, no sweat. I suspect however, that my story is not unique. Many science writers before me must have experienced something similar and no doubt, it will happen to someone again in the future.

………………………………………………………………………………………………………………………….

A Related Aside: Check out the hostility I received here in a recent forum discussion entitled: How many Earths in our Galaxy?  I wonder if Waltham would experience the same hostility were he to post his ideas on that forum? Disgraceful? I’d say so!

…………………………………………………………………………………………………………………………….

 

That’s why I was very excited about this recent book, Lucky Planet, written by one of the UK’s most respected geophysicists, David Waltham, who heads a large research team in the Department of Geosciences, Royal Holloway, University of London.

Waltham’s thesis is this; the Earth has enjoyed, more or less, 4 billion years of “good weather,” and that we owe our entire existence to an extraordinary sequence of “lucky” happenings that have come about to make and maintain a habitable planet.  Furthermore, this unmerited fortune is very unlikely to occur on the vast majority of worlds that inhabit the observable Universe. Being used to a world teeming over with life all around us, we suffer, Waltham argues, from a severe dose of “observational bias”, which leads many to naturally conclude that life must exist everywhere. He gives some very good examples of how observational bias can lead us to wrong conclusions. For example, Waltham notes that most of the stars visible to us in the night sky are actually larger and more luminous than the vast majority of stars that really exist. But with a telescope, this bias is transformed into something much closer to the truth; that the Universe is filled with innumerable red dawrf stars much fainter and less luminous than the Sun. Indeed, as Waltham reminds us, some 95 per cent of all stars that exist are smaller than the Sun! So looks can deceive!

The principle of mediocrity; the idea that our predicament should not be viewed as special is grounded in the Copernican principle, which Waltham discusses in chapter 2. I was especially impressed with his research on the life and works of Giordano Bruno (1548-1600), who is often cited by science popularisers as a “martyr for science,” and erroneously pedelled by science celebrities such as the late Carl Sagan, and more recently, Neil deGrasse Tyson, not to mention a great many introductory astronomy texts. Waltham convincingly argues that this is largely a scientific myth used to push a certain philosophic agenda(anti-Christian) on an unsuspecting public.

Calling on a great deal of new scientific evidence from astronomy, planetary science and paleoclimate studies, Waltham weaves a very sophisticated scientific picture of the key events in Earth’s deep history that have contributed to maintaining a viable biosphere ever since life took a hold on the young Earth near on 4 billion years ago. Some of the facts he presents are indeed profound: A warming trend as small as 1 degree C every 100 million years would have been enough to make our world uninhabitable by now, and it would not have been surprising had such a trend occurred.

pp 47

Much of the science in the book derives from Waltham’s own work in theoretical modelling of paleoclimates, as well as geology field work, with many amusing anecdotes along the way. When he was a boy, for example, he lived for a time on the west coast of Scotland, where his love of fossils and geology was nurtured. As a teenager, he became a keen amateur astronomer, with a particular love for the Moon, and even built a few reflecting telescopes, but like myself, drifted away from astronomy for a period to pursue his education in physics, only to return to important astronomical topics later in his career. And though he does not acknowledge the work of a Creator as the explanation for this extraordinary serendipity, he remains respectful of those who do hold religious beliefs.

The book continues with excellent, well-informed chapters on Big Bang cosmology, a spectacularly successful scientific model for the origin and evolution of the Universe, the stabilising effects of the Earth’s Moon, the role of James Lovelock’s Gaia theory in attempting to explain the many inter-related factors that maintain a complex biosphere, and how it fares in comparison to his own ‘Goldilocks’ view of Earth, where luck was the pre-eminent factor in our planet’s success. He appeals to the anthropic principle quite a bit in the book and its usefulness in explaining why the Universe as a whole appears fine-tuned for life.

That said, the book does display a few significant shortcomings. In a biological context, he uses the word “evolution” more like a magic wand than a proper scientific tool. Stars, planets and galaxies evolve because we can model their evolution with a fair degree of precision. But the same has not been demonstrated for the most complex things we know about; living systems. All we hear is ‘this evolved into that,’ with no explanation as to how it happened. And details are very important when trying to convey scientific truths. He rates Charles Darwin as a significant scientific figure, whereas I do not. There is little discussion on the details of how life arose except the usual handwaving about some mysterious ocean floor vent,  and a ‘just so’ story of how replicating RNA models were miraculously encapsulated into a fully viable lipid membrane and the like. I got the distinct impression that Waltham did so in a rather tongue in cheek manner, as if he were toying with his readers. Later in the book he alludes to this shortcoming in the context of computer modelling:

It may seem surprising that the Moon could provide the best evidence of the Earth’s life-friendliness when other factors, such as biological evolution, have had a much more direct and significant impact on our planet’s developing environment. There are several reasons why the Moon tells a more convincing story of our good fortune than many other, apparently more promising, facets of our world. For a start, the behaviour of the Earth-Moon system is reasonably well understood one, controlled by the relatively simple equations of celestial mechanics. I say ‘relatively simple,’ because the details are still a bit of a nightmare. Isaac Newton himself complained that thinking about the motions of the Moon made his head ache! Nevertheless, unlike climate evolution or the evolution of animals and plants, the changing behaviour of our satellite through time can be mathematically modelled with reasonable precision.

pp 184

I applaud the intellectual honesty of Waltham in an age where many inflated scientific egos assert that we have nearly everything figured out. Science itself is evolving; it never ceases so long as inquisitive minds keep seeking answers. What may be true today may not be true tomorrow. He writes;

I should in all honesty admit that experts would argue over almost every one of the details in the story I have just given…..

pp 61

I was also surprised by his avoidance of providing an in-depth discussion on the Cambrian Explosion, which occurred about 541 million years ago and which led to 80 per cent of extant animal body plans suddenly appearing within a short span of a few million years(some are now saying less than a half million years), and with no credible evolutionary antecedents. Indeed, we now know the fossil record as a whole does not support an evolutionary narrative, with vast periods of stasis interspersed with mass extinctions followed by equally rapid appearances of new species and ecosystems. Waltham would have also benefitted from the work of the world-renowned synthetic organic chemist, Professor James Tour, who has recently weighed in to expose the shocking degree to which human intervention is needed to reproduce even the very first steps toward the simplest of lifeforms. Suddenly, Waltham would have to thank his lucky stars many times over again for all the other convenient happenings in Earth history!

How I wish Waltham were as enthusiastic about the details of living systems as he clearly is about rocks!

Having said all that, Waltham does concede that the origin of life will be a very unlikely event anywhere;

I believe that the origin of life, like all the major steps leading to the emergence of intelligence, is a rare occurrence.

pp 208

I think that’s quite an understatement!

In addition, Waltham hopes that future robotic or human explorers will one day uncover evidence that Mars has (or had) microbial life but offers this very sensible qualification:

My hope is that we will soon find microscopic life living beneath the surface of Mars and my expectation is that its biochemistry will show it to be similar to Earth life. This will generate some interesting discussions as we debate whether the evidence that there is only one way to make life or evidence for cross-contamination between the worlds. I expect a consensus to eventually emerge that the similarities are too great to be explained by a separate origin…

pp 208

As you can see from the internet thread I linked to above, I got lampooned for asserting that the question of whether life is commonplace in the Universe is not really scientific in the sense that we should not expect it to be commonplace in the Cosmos. In other words, it is scientifically naive to assume so. Professor Waltham affirms the same general conclusion in stating that the scientific consensus will very likely fall on the side of extreme rarity rather than ubiquity. He writes;

The scientifically conservative position should be that life is rare and intelligence even more so.

pp 186.

He even advises that others should have a similar frame of mind about the Earth:

I certainly believe that the possibility that the Earth is special should be taken seriously by everyone and for all sorts of reasons, but in conclusion, I’d like to finish with the most important justification of all for considering this idea. It’s probably true.

pp 212

Waltham is a very engaging and likeable intellect; a deep thinker, who kicks back hard against the goads.

Clearly, our Dave put a lot of thought into this book. But I sense he is searching for something. He is deeply intrigued by the perfect solar eclipses we experience, whether it is merely a highly unlikely coincidence or whether it points to something far greater, and even describes his trip along with a few chums, to Germany to get a good view of the August 1999 apparition. He often gives thanks to the powers that be (let’s call it the goddess Fortuna) for how lucky he feels to have existed at all! He even ends with a surprising comment; and this from a man who cannot, by his own admission, believe in miracles:

I will not finish on a negative note. Earth and countless other inhabited worlds scattered thinly throughout an unimaginably immense multiverse has given rise to a fragile wonder of life. On Earth we have laughed, loved and wondered at the beauty of the world and the Universe around us. We are part of an extraordinary miracle and I, for one, feel very lucky.

pp 214.

So although Waltham’s goddess – Fortuna – allows for life bearing planets but only so rarely that one or two might exist in each galaxy at the most, or galaxy cluster, he also plays mind games with himself. I was particularly intrigued by these comments:

Acceptance that the Earth is a very odd planet, and that this was necessary for the emergence of humans, also has a very obvious impact on the search for extra-terrestrial intelligence. Quite bluntly, if there is significant anthropic selection for Earth properties, then we are effectively alone in the Universe. As I discussed earlier, the nearest extra-terrestrial civilization could easily lie beyond the edge of the visible Universe and so be uncontactable. This is quite a disappointing conclusion for many. Indeed, one prominent, well-informed critic of the anthropic ideas has admitted that his views may be coloured by having grown up watching the original ‘Star Trek’ series. Maybe my own views have been coloured by slightly more recent films. I’ve thought for a long time that ‘Alien’ was more plausible than ‘Mr. Spock’, so it’s quite possible that my subconscious doesn’t want aliens to exist.

pp 211

I can empathise with the author here, as my own position is that we are alone.

And there’s a good reason for that!

On my sojourn through this extraordinary labryinth we call life, I have lost my faith in Fortuna; for she acts blindly, with no foresight and cannot create; always fumbling in the dark.

Neither does she care.

But, 20 centuries ago, an extraordinary human being walked the dirt roads of the Galilee, bringing Light to the world, a man-child born in a manger, who grew in wisdom and stature, healed the sick and the infirmed, fed the masses with little more than a morsel of food and even commanded the winds to die down. By turning water into choice wine at a wedding, He gladdened the human heart. He raised the dead, walked on water, and after suffering a horrific execution on a Roman cross; rose triumphantly from the dead and appeared to more than 500 believers before ascending on the clouds to Heaven. In the Holy books written concerning Him we read:

He is the image of the invisible God, the firstborn over all creation.  For by Him all things were created that are in heaven and that are on earth, visible and invisible, whether thrones or dominions or principalities or powers. All things were created through Him and for Him. And He is before all things, and in Him all things consist.

Colossians 1:16-17

This Person chose to enter His own creation and cared Himself to death.

His name is Yeshua of Nazareth, and He promised to return to this Earth, which He created, to bring an end to all evil, suffering and death. The same Holy books say that every knee shall bow and every tongue confess that He is Lord.

I joyfully await His return, and would encourage Dr. Waltham to research His truth claims. He brings joy and meaning to my life; Yeshua; the eternally Living God, who will not share His glory with another.

So, to end this review, and despite the few reservations I have with it, I would heartily recommend this book to anyone wishing to get an up-to-date and scientifically accurate picture of how we got here. It is a very well written work, full of joy, wonder, humour and optimism; a book that will help you appreciate just how wonderful every human life is!

Errata:

pp 49 the author says the Orion Nebula is a few hundred light years away. It’s actually about 1,350 light years distant.

pp 54 The author says that Banded Iron Formations(BIFs) cannot form in the presence of oxygen.

BIFs are formed when aqueous iron ions combine with oxygen forming insoluble oxides which form precipitates known as BIFs.

 

 

Dr Neil English holds a BSc(Hons) in Astrophysics and a PhD in Biochemistry,  regularly kicks against the goads, and is author of a new historical work; Chronicling the Golden Age of Astronomy, published by Springer-Nature.

 

De Fideli.

A Survey of Binocular Astronomy Literature.

Every dedicated binocular enthusiast needs a good binocular guide.

Dedicated to Steve Coe (1949-2018)

As an enthusiastic, life-long collector and reader of astronomical literature, I’ve always appreciated the power and value of the printed word.

Having re-ignited a keen interest in binocular observing, I was somewhat saddened to see that many great works of binocular astronomy were being largely ignored by amateurs. To help redress this balance, this blog will take a close look at a number of books dedicated to the art of visual observing using ordinary binoculars, where I offer short reviews of a number of inexpensive works. Their value lies in the collective knowledge of the authors who have produced these works; experience that far exeeds those offered by the self-proclaimed ‘experts’ constantly chattering on internet forums. And you will save yourself a small fortune – time and money – by heeding their advice.

Exhibit A: Discover the Night Sky through Binoculars: A Systematic Guide to Binocular Astronomy.

Author: Stephen Tonkin

Publisher: BinocularSky Publishing

ISBN: 978-1-9164850-0-6

Price: £10

1st edition: October 2018, pp 145.

Want a good binocular guide for Christmas? I have the perfect recommendation for you! Stephen Tonkin’s new book is sure to appeal to binocular enthusiasts of all ages. Tonkin is no flash in the pan. He has authored or contributed to many books I’ve acquired over the years and writes a monthly column on binocular astronomy for Britain’s BBC Sky at Night magazine. He also maintains an excellent website dedicated to binocular astronomy, which can be accessed here.

So I was in no doubt about my expectations concerning his new offering and boy does it deliver! Though it looks like a self-published book, Discover the Night Sky through Binoculars, is a witty and authoritative survey of what can be realistically achieved with binoculars. After a short introduction, the first three chapters cover all the technical stuff you’re likely to need to know about how to get the best out of a decent binocular. There is a particularly humorous mention of some rubbish models, which Tokin refers to as “binocular-shaped objects.” He avoids making specific recommendations about specific models though, which is a good thing, as many units can now be purchased fairly inexpensively that can provide a lifetime of great astronomical views.

The remainder of the book is divided up into the many binocular sights arranged in a month by month sequence. His superlative first-hand knowledge of the heavens shines through as he clearly and effectively shows the reader how to locate each target. All the showpiece binocular targets are covered in this book, and many more besides. Though the sky maps printed in the book are a bit small to see well, one can always download higher quality maps from his website which you can study at your own leisure. I love his description of a phenomenon called pareidolia, which describes the psychological condition of seeing patterns in the starry heavens that are not really there!

It’s very easy to use this book, especially if you already have some experience of the night sky, but it will work equallly well for newbies. Indeed, it’s almost like having an expert right beside you as you make your own binocular observations. The end of the book features several useful appendices, whch cover important topics, such as how to determine the size of your dilated pupil, how to test your binocular for defects, as well as sound advice on how to maintain your binocular in tip-top condition over the months and years.

This is a great, no-frills book, with simple black & white illustrations, but it’s packed full of excellent observing projects that will keep you blissfully happy for many years to come.

Exhibit B: Binocular Highlights: 109 Celestial Sights for Binocular Users

Author: Gary Seronik

Publisher: Sky & Telescope

ISBN: 978-1-940038-44-5

Price: £18.99

2nd Edition 2017, pp 112.

Gary Seronik is no stranger to those who have enjoyed Sky & Telescope magazine over the years. He wrote a regular column; Binocular Highlights; for Sky & Telescope between 1999 and 2016, where he thereafter became the editor of the well regarded Canadian astronomy periodical, SkyNews. This neat little book features 109 objects from all over the northern sky that can be enjoyed with binoculars. After a good introduction, Seronik summarises all the things you need to know about binoculars and makes a specific recommendation that a 10  x 50 unit is probably the best compromise between power and portability. That said, he admits that he is an avowed fan of image stablised models, such as his favourite; a Canon 8 x 42IS.

The remainder of the book is divided up into chapters covering the four seasons of the year, where he presents a series of brief but very engaging mini-essays on the most celebrated of all binocular targets, concentrating on those objects that are best seen from mid-northern latitudes, though he does have an occasional entry of sights only visible in the deep south, such as the illustrious Omega Centauri. The book is lavishly illustrated throughout, with full colour charts typifying a 10 x 50 binocular view, on pages made from thin cardboard rather than regular paper, and is ring bound for convenient use in the field.

If I have any quibbles to make about this book, they are minor; I just wish he could have included more objects. That said, I suspect that, for the vast majority of observers, yours truly included, binocular observing is not really about pushing the envelope to observe overly difficult or challenging objects. The targets themselves are so beautiful that you’re likely to observe them many times during a season, where their orientation in the binocular field changes as they wheel across the sky. Thus, Binocular Highlights is designed for observers who just enjoy looking at the same objects as the season’s progress; and that’s fine.

Now in its second edition, Seronik has added 10 new entries over the original book, which is a bonus. In short, you can’t go wrong with this excellent little field guide but all the while, I can’t help but think those lovely coloured charts go a bit to waste when manhandled in the field.

Exhibit C: Stargazing with Binoculars

Authors: Robin Scagell & David Frydman

Publisher: Philips

ISBN: 978-0-540-09022-8

Price: £13.74(second edition)

1st edition, 2007, pp 208.

It is oft stated that the best way to start out in the fascinating hobby of astronomy is to purchase a good binocular. There is a great deal of truth to this sentiment. Many folk who express a casual interest in stargazing quite often become disillusioned by it, perhaps because they live in a heavily light polluted location, or they made the mistake of purchasing a large, complicated telescope that is just a pain to set up in the field. The wonderful thing about binoculars is that they are much more versatile than dedicated astronomical telescopes, since they can be used during the day to have a good look around, for nature treks, birding, camping, watching sports and the like.

Stargazing with Binoculars takes a much more pedestrian path through the fascinating world of binocular observing. Written by two veteran stargazers, Robin Scagell and David Frydman, who have amassed an enormous amount of field experience with more binoculars than you could shake a proverbial stick at. Their book, now in its second edition, shows you how the sky works and then presents a month by month overview of what can reasonably be seen using binoculars of various sizes. Unlike the aforementioned books, the authors include sections on lunar, planetary and solar observing, before engaging in a comprehensive survey of the binocular market. This is a great book to learn about how binoculars are made, what the various models offer the observer and how to test binoculars prior to purchasing. It also features an excellent chapter on how best to use a given binocular; whether it be hand-held, harness stabilised, or securely mounted in a variety of configurations, from simple monopods to complex binocular mounts.

Stargazing with Binoculars provides a wealth of information that any interested reader will find useful, including how to estimate binocular fields using star tests, making sketches of what one sees in a binocular, as well as sections on observing comets, meteors, artificial satellites and much more besides. It also provides a comprehensive overview of the southern sky, so it is equally useful to those observers who enjoy life in the antipodean.

This is a fabulous, cost-effective book for all binocular enthusiasts, featuring a generous number of full colour images to complement the text, and although I have not seen the second edition( 2013), I’m sure it will be just as good if not better. All in all, a great stocking filler for the binocular enthusiast!

Exhibit D: Observing the Night Sky with Binoculars: A Simple Guide to the Heavens

Author: Stephen James O’Meara

Publisher: Cambridge University Press

ISBN: 978-1843155553

Price: £24.99

2008, pp 148

I’ve always been a fan of Stephen James O’ Meara, a highly accomplished visual observer, who served on the editorial staff of Sky & Telescope for many years before joining Astronomy(USA) as a regular columnist. I have collected and enjoyed all of his books over the years and would heartily recommend them to anyone.

Though he is perhaps better known for his studies of deep sky objects, observing from the big Island of Hawaii using 4- and 5-inch refractors, I was glad to see that he produced a book dedicated to binocular observing to complement his telescopic adventures.

Observing the Night Sky with Binoculars is a large book compared with all the others mentioned above, with dimensions of 12 x 8″. The book opens with a great introduction to exploring the night sky, featuring the Big Dipper as a starting point to find your way around the sky. Here, you’ll learn how to estimate angular separations between objects, how best to perceive star colours, as well as a good introduction to the physiology of the human eye. A surprising amount of information can be gleaned by studying the Big Dipper and how it points to many other interesting objects nearby in the sky. What is somewhat surprising about this work is that O’ Meara categorically states that he used inexpensive binoculars – 7 x 50s and 10 x 50s – in preparing the material for this book. He does not dwell on the intricacies of binocular construction or advocate any particular brand of binocular, in contrast to his other books, where he strongly advertises the virtues of small, expensive TeleVue refractors(been there, done that, not going back).

The book continues by taking a seasonal look at the treasures of the binocular sky, covering each season from spring, summer, autumn and winter. What is immediately obvious is that O’ Meara has an encyclopedic knowledge of the mythology of the heavens, with a particular interest in ancient Egyptian sky lore. While this is all very good, I personally would have liked less discussion on mythology and more about actual observing, but everyone has their own take on how best to present the wonders of the night sky and, in this capacity, O’ Meara carries his own torch.

All the illustrations in this book are black & white, but the charts and diagrams are very easy to read and assimilate. In addition, there is a wealth of good drawings made by the author in this book which greatly adds to the value of this work and while many targets can be seen by the averagely keen eye, some are very challenging, requiring both very dark and transparent skies and a very keen eye to fully appreciate.

Though it is a bit more pricey than the other books discussed above, anyone with a keen interest in the binocular sky will appreciate this very well written book, and I for one feel fortunate indeed to have a copy in my personal library.

Exhibit E: Handbook of Binocular Astronomy: A complete guide to choosing and using binoculars for astronomers – whether beginners or not-so-beginner.

Author: Michael Poxon

Publisher: Starman Books

ISBN: 97809562394-0-2

Price: £12.96

2009, pp 397

Now for something completely different!

Michael Poxon is a name unknown to me, but that ought not deter a curious individual from investigating a book. Often times, to my growing knowledge, it’s ordinary folk who come across as being the most sensible and the most experienced, as opposed to the loud-mouthed guffaws you see on internet forums.

And Poxon puts his all into this very large book!

It begins, as all the others do, by stressing how important binoculars can be to the novice and dedicated astronomer alike. He offers sage advice in purchasing a good binocular, you know; what to avoid and what not to avoid. Curiously, he advises against image stabilised binoculars for the following reasons; they’re often very heavy(over a kilogram) and so do nothing to stave off arm ache, they rely on battery power(which he finds to be a nuisance) because they lose their charge in a few hours. They are also very expensive and the author feels that the money is better spent on conventional optics. Furthermore, he rightly points out that better stablisation can be achieved by using a homemade monopod. In this, I wholeheartedly agree; my brief experience with an image stabilised unit a few years back left me feeling a little underwhelmed and I felt the images were, let’s say a tad “artificial.” And although Poxon certainly advocates the cheap and cheerful porro prism varieties, he also sings the praises of compact, roof-prism models because of their labour-saving low mass in comparison to the former, albeit at some additional cost to the consumer. It is also clear that Poxon is a highly seasoned enthusiast, who has travelled to many places around the world to observe the binocular heavens. Ever the practical man, he has the presence of mind to include the construction of effective, low-tech dew shields for his 10 x 50s used during his prolonged binocular surveys, which he often mounts astride his 36cm telescope.

Chapter 2 deals with the basics of the celestial sphere, the magnitude scale of stars, as well as a very useful table indicating the magnitude limits, field of view and angular resolution of various popular models used by the amateur community. He also offers up valuabale advice on how much one can gain in stabilising a binocular; on page 31, for example, we learn that one can go a hefty 1.5 magnitudes deeper on a stabilised system compared with hand holding; and I’d call that signficant!

What follows are excellent general overviews of the Sun, Moon and planets, eclipses etc. Poxon does an especially good job in helping the reader recognise the many lunar craters and mountain ranges within the resolution remit of a typical 10 x 50 binocular with simple but very effective lunar maps. In Chapter 5 (which is mistakenly printed as Chapter 3), he delves into the fascinating world of deep sky astronomy and what follows is a very impressive listing of interesting variable stars, double and multiple stars (both wide and close-in) as well as a treasure chest of deep sky objects from the entire pantheon of constellations in the sky( the whole 88 are represented).The data is arranged in the form of notes which can be easily followed by the interested observer.

While the illustrations are not of the highest quality, they are generously presented and can be followed without much fuss. The end of the book contains a series of useful appendices with particular emphasis on variable star monitoring.This is an excellent book and, true to its opening lines, has something for every level of enthusiast; from newbie to veteran. I was pleasantly surprised by its excellent content, written by a well heeled amateur.

Exhibit F: Deep Sky Observer’s Guide

 

Author: Neil Bone

Publisher: Philips

ISBN: 0-540-08585-5

Price: £9.99

2004 pp 223

An honorary mention. The late Neil Bone(1959-2009) was a highly accomplished deep sky observer, public speaker and writer. A microbiologist by profession, he spent many of his evenings observing the glories of the deep sky from his Sussex home. Despite his notoriety and universal respect by the British astronomical community, Bone used simple equipment throughout his life, which included a ShortTube 80, a 10 x 50 binocular and a small Dobsonian telescope to accomplish all his observing goals. Deep Sky Observer’s Guide is a wonderful little book for beginning stargazers, featuring a rich selection of deep sky objects that are accessible to anyone with the same equipment. The first two chapters cover the basics of deep sky observing, including a great overview of the celestial sphere as well as the equipment and observational skills amateurs use to good effect to divine its many secrets. The rest of the book has chapters dedicated to particular deep sky real estate, including galaxies, asterisms, globular clusters, diffuse nebulae, open clusters, planetary nebulae and supernova remnants. Although the book is not about using binoculars per se, Bone used his 10 x 50 to make excellent observations of many of his subjects and are preserved for posterity in the pages of this literary gem. To see just what can be accomplished with a humble 10 x 50 binocular, this now classic text is a great place to spend some time. Many of the deep sky objects he describes were observed using his trusty binocular, and despite his premature passing, his rich word pictures still have the ability to inspire me. In amatam memoriam.

 

 

Exhibit G: Binocular Stargazing

Author: Mike D. Reynolds

Publisher: Stackpole Books

ISBN: 978-0-8117-3136-2

Price: £5.99

2005, pp 213

 

The late Mike D. Reynolds is a name familiar to many American and Canadian observers. A professor of astronomy and Director Emeritus at Chabot Space & Science Center at Oakland, California, he is probably best known for his popular writings in Astronomy Magazine, as well as his excellent books on eclipses and meteor watching. Binocular Stargazing is a very well written and thought-out book, covering a lot of ground. After a short foreword from celebrated comet discoverer, David H. Levy, the first three chapters provide all the information you’re likely to want to know about binoculars, past and present, written in a friendly yet authoritative style. What is very refreshing to see in this title is that, like nearly all the other authors of binocular astronomy, Reynolds emphasises that one can obtain excellent results with only a modest investment; a philosophy yours truly also shares.

Chapters 4 through 7 offer excellent overviews of how binoculars can be used for lunar & solar observing, before engaging in a thorough but non-technical treatise on the wider solar system objects, the distant stars, as well as presenting a great introduction to deep sky observing. One slight niggle pertains to the author’s persistent use of the term “pair of binoculars” throughout the book. Though certainly not a big deal and still used my many observers, the phrase doesn’t really make a whole lot of sense. The word ‘binocular’ implies duplicity. Better to use ‘binocular’ to refer to a single instrument and ‘binoculars’ when referring to more than one such instrument.

Chapters 8 through 12 offer up one of the best surveys of the binocular sky I’ve seen, arranged in seasons, ending with a special chapter devoted to observing from southern skies. Throughout, Reynolds displays his first-hand experience in the field and has a talent for making the subject matter very accessible. The science presentation is first-rate, as one would expect from a guy with an advanced degree in the science. Variable stars are particularly well represented in this title.

What I particularly liked is the inclusion of extensive appendices (A through I) at the back of the book. One appendix in particular, emphasises the age-old tradition of note-making and keeping, sketching and the like; an activity of great importance even in this age of instant digital gratification.

The text is quite generously illustrated in monochrome, though some of the images could have come out better, they are certainly good enough not to distract or confuse the interested reader. All in all, Binocular Stargazing is a highly recommended book for binocular enthusiasts, and I for one will continue to enjoy dipping in and out of it in the future.

Exhibit H: Touring the Universe Through Binoculars: A Complete Astronomer’s Guidebook.

Author: Philip S. Harrington

Publisher: Wiley

ISBN: 978-1620456361

Price: £18.34

1990, pp 306

It is hard to believe that nearly 30 years has gone by since the publication of Philip Harrington’s, Touring the NIght Sky with Binoculars. Back then, I was still an undergraduate, with only a 7 x 50 porro prism binocular and a 60mm classic refractor which I used to explore the night sky. Pluto was still a planet and the first CCD imaging pioneers were beginning to tinker with their crude chips to obtain electronic images of the celestial realm; most were still using photographic film. And while amateur astronomy has changed beyond measure in only three decades, Harrington’s book provides solid evidence that some texts will never go out of fashion.

The preface of this now classic text reveals the modus operandi of the author, who admits that the book was primarily written for himself! Giving an honourable mention to Garrett P. Serviss’ 1888 work, Astronomy with an Opera Glass, Harrington weaves together an enormous body of field knowledge, which both complements and far exceeds the collective wisdom of his distinguished Victorian predecessor.

Harrington was one of the earliest amateur astronomers to call attention to the considerable advantages of using two eyes, explaining that gains of up to 40 per cent can be achieved in resolving fainter, low-contrast deep sky objects. This much is made clear in the short introduction to the book, but the march of time has thoroughly vindicated his binocular evangelism, as evidenced by the great popularity of bino-viewing, as well the growth of binocular astronomy in general among the global amateur community.

The book, as Harrington makes clear, is actually a collection of concise notes which he himself compiled in his adventures under the night sky. Eschewing any discussion on equipment, the author launches into fabulous discussions of the Moon, Sun, planets and minor bodies of the solar system, before wading into the pantheon of objects existing far beyond our shores. Beginning in Chapter 7, Harrington provides concise but highly accurate depictions of a sumptuous listing of deep sky objects:- stars, open clusters, nebulae and galaxies, as seen in a variety of binoculars, both large and small.

In a departure from most other authors, Harrington recommends the 7 x 50 above the 10 x 50 as the best all round instrument for hassle-free binocular observing, but it is also evident that he has gained a considerable amount of experience behind a larger 11 x 80 instrument. Every constellation in the heavens is discussed separately, rather than approaching the subject from a season by season perspective. This works supremely well, being more reminiscent of Robert Burnham Junior’s three volume work, Burnham’s Celestial Objects, than anything else.

While this hardback text was not designed to be used in the field, it is an indispensable work for planning and reflecting upon the sights seen on a clear, dark night. I find myself using it to compare and contrast it to my own observations and notes and to challenge myself to see more with a given instrument.

Remarkably, any discussions on binoculars per se are reserved for short appendices at the back of the book. Like all truly seasoned observers, Harrington avoids making specific recommendations, emphasising that one can do a great deal with modest equipment. Appendix B in particular, discusses how resourceful amateurs have hobbled together exceptional mounting strategies that greatly increase the comfort of viewing through truly giant binoculars, featuring such individuals as Norm Butler, Jerry Burns and John Riggs, to name but a few.

Although technology has certainly moved on (just look at the quaint photographs used to illustrate the text!) since Harrington first collated the work for this text, it is unlikely to be superseded by anything in the modern age. Indeed, it remains, for me, the definitive volume of binocular astronomy and shall continue to hold a special place in my astronomical library. Thoroughly recommended!

Concluding Words:

Just like in the case of telescopes, we are fortunate to live at a time in history where quality binoculars can be had for relatively small amounts of money. There is a bewildering number of models available to suit everyone’s budget, and even the least expensive units are immeasurably superior to the naked eye. But as all the authors of these books make clear, what is most important is that one gets out under a starry sky and use the instrument. Of course, one can decide to avoid the collective wisdom of these writers, but it will most likely lead the researcher down many dead ends (I speak from the well of my own experience), where one is tempted to keep buying ever ‘better’ models in the mistaken belief that grass is really greener on the other side. Unfortunately, this is largely the state of affairs on our telescope and astronomy internet forums, where folk seem to be more interested in a said instrument than actually using it. This is highly regrettable; indeed it is a very real kind of poverty, missing, as it were, the woods for the trees, but it can easily be countered by just getting on with the equipment we have.

I hope you have found these mini-reviews of some use and I do hope that amateurs everywhere will avail of these well thought out resources, written by people who have a real passion for observing the night sky and for sharing their knowledge with others.

 

Neil English is currently writing a book on doing up and using budget Newtonian reflectors to be published in 2021.

 

De Fideli.