Changing Culture III: Aperture & Resolution.

On the left, a 90mm apochromatic refractor and on the right, a 203mm f/6 reflector enjoying a bout of late evening sunshine.

On the left, a 90mm apochromatic refractor and on the right, a 203mm f/6 Newtonian reflector enjoying a spell of late evening sunshine.

 

 

 

 

 

 

 

 

 

 

Introduction:

One of the ABCs of telescopic optics is that resolving power scales linearly with aperture and light gathering power with the square of aperture. These are fundamental facts that are demonstrably true and have been used productively over two centuries of scientific applications. And yet, all the while, there has been a consistent drive in the last few decades within a section of the amateur community that somewhat erroneously links performance to absolute monetary value. This largely corrupt movement is most ostensibly seen in the refractor market, where amateurs are apparently willing to shell out relatively large sums of money for telescopes that, in terms of performance, are severely limited by their small apertures. This is a worrying trend indeed, and has led many astray within the hobby.

In this capacity, I decided to highlight the anomaly by devising a simple test which exposes this ‘peashooter’ mentality for what it is; a gross misrepresentation of basic optical principles.

Materials & Methods:

Two telescopes were set up in my back garden; a 90mm apochromatic refractor retailing at £1017 (tube assembly only) and a 203mm f/6 Dobsonian, with a retail price of £289, but with some basic modifications (97% reflectivity coatings and a smaller secondary giving a linear obstruction of just 22 per cent) which increased its cost to  approximately half that of the smaller telescope. The Newtonian was carefully collimated before use.

The telescopes were left out in the open air during a dry and bright evening when the temperatures had stabilised and were fully acclimated. Both instruments were kept out of direct sunlight. The refractor had an extendable dew shield to cut down on ambient glare, while the Newtonian was fitted with a flexible dew shield to serve the same purpose. To remove the complicating effects of atmospheric seeing, the telescopes were targeted on the leaves of the topmost boughs of a horse chestnut tree, located about 100 yards away.

Both telescopes were charged with approximately the same magnifications, in this case, a very high power was deliberately chosen; 320x. Next, the images of the leaves were examined visually, being especially careful to achieve the best possible focus, and the results noted.

Results:

The 203mm Newtonian images of the leaves were crisp, bright and full of high contrast detail. In comparison, the image served up by the refractor was much dimmer and a great deal of fine detail seen in the larger instrument was either ill-discerned or completely invisible in the smaller instrument. Though less dramatic, the same results were obtained when a larger refractor (127mm f/12) was compared with the 203mm f/6 Newtonian under similar conditions, with the latter delivering brighter, crisper images with finer detail.

Conclusions:

This simple experiment, requiring nothing more than a few minutes of one’s time and no complicated formulae or optical testing devices, clearly showed the considerable benefits of larger aperture. The images served up by the Newtonian were brighter and easier to see than those served up by the smaller instrument. Resolving power and light gathering power work hand in hand; you need decent light grasp to discern fine details and vice versa.These results were largely independent of the surrounding atmospheric conditions, as the targets were located at close proximity to the telescopes and thus had to travel through a short column of air.

These experiments were repeated with larger instruments; a 127mm f/12 refractor and the same 203mm Newtonian, with the same results, that is, the smaller instrument runs out of light faster than the larger and shows less fine detail in the images served up.

These results confirm that larger aperture is superior to smaller aperture. No amount of claptrap can change the result either. Complications may arise when the same tests are performed on celestial targets, especially during bouts of turbulent atmospheric seeing, when the larger instrument will be commensurately more sensitive. In such instances, it is the environment that introduces anomalies. But when conditions are good, the benefits of larger aperture will be seen, clearly and unambiguously. Absolute monetary value has little or nothing to do with the end result, in direct contradistinction to what is claimed by those who promote small aperture refractors in an unscientific way.

See here for further reading.

 

De Fideli

Leave a Reply

Your email address will not be published. Required fields are marked *