N=2: Why I’m the Very Proud User of a Barr & Stroud Savannah 8 x 42 Binocular.

An alpha binocular in many ways, except for the price.

Semptember 9, 2019

I’ve said it before, and I’ll say it again: there is something in a name.

In my ongoing investigation into binoculars, I’ve discovered that, like telescopes, you don’t always get what you pay for. In particular, if a product offers advanced optical features like a full multi-coating on all air to glass surfaces, ED elements, or phase corrected roof prisms, it doesn’t necessarily translate into a solidly functioning optic. I’ve tested products purported to have premium optics but upon inspection, did not deliver all the goodness that they were promising in cleverly devised youtube promos and fancy specification sheets etc.

One company that has bucked this trend is Barr & Stroud, a once prestigious optical and engineering firm, established in Glasgow, Scotland, that at one time supplied all manner of optical instruments to the British navy during two world wars. Like many other large optical firms established in Britain, it underwent considerable re-structuring over the decades. Today, the brand name is owned by Optical Vision Limited(OVL) and began producing binoculars for the civilian market in 2011, moving production to China.

My enthusiasm for the brand began just a year ago(2018), when I initiated testing a variety of their binoculars in different price ranges. Like many others who have looked through their instruments, I was duly impressed by the incredible bang for buck of their offerings, with optics that punched well above their modest price tags.

Of particular note is the Barr & Stroud Savannah 8 x 42, which delivered wonderful, wide-field, high-contrast and colour pure images of the Creation. Unlike other brands in the same price range, which offered so-so performance, especially off-axis, these binoculars maintained excellent control of the same aberrations. The massive 8.2 degree field of these 8x glasses is sharp across the vast majority of the field, with only the extreme edges showing significant distortion.

My first Savannah was actually purchased on the second-hand market, and that out of sheer curiosity. Expecting such a wide angle binocular to show average optical quality as one moves off axis(like so many others I’ve tested), I was very pleasantly surprised to discover that this excellent image quality was being maintained to the extreme edge of the field. Indeed, the view, in retrospect, was almost too good to be true. Unfortunately, the dioptre ring, which is situated in a very unusual place on this binocular (just ahead of the large focus wheel) developed a fault, which necessitated its return to OVL for repair. What I actually received was a brand-new instrument and so I was able to asess the performance of two samples of the Barr & Stroud Savannah that inspired the writing of this blog.

Two great performers: the Barr & Stroud 8 x 42 Savannah(left) and the 10 x 50 Sierra(right).

Built like a proverbial tank, the fully weatherproof and nitrogen purged Savannah 8 x 42 is heavier than many competing models on the market. Indeed, at 819 grams, it even weighs more than my 10 x 50 Barr & Stroud Sierra binocular (which also delivers excellent optics and mechanics for the buck). Outwardly, the Savannah has a rather Spartan look and feel about it, with features that are simple and rather understated. The eye cups are of very high quality, which can be set to three positions, and with a very generous 18mm eye relief, is ideal for eye glass wearers and those who like to observe without glasses. When twisted up, they click into place with a reassuringly loud “thwack” sound, and which remain in that position even after excess pressure is applied. Indeed, I rate these eyecups very highly and amongst the best that I have sampled thus far in my binocular education.

The high quality multi-coatings on the 42mm objective lenses of the Savannah. The reader will also note how deeply recessed the objectives are. This helps suppress glare in bright, daylight conditions.

The focus wheel is large and moves smoothly without any stiction, either clockwise or anti-clockwise, making it easy to change the position of best focus from as close as 2 metres to beyond infinity. The tension is just right; not too stiff and not too slack.

All the accessories that come with the Savannah are of high quality; including a hard black clamshell case, a padded neck strap with the B&S logo and rubber objective and eyepiece lens caps that can be affixed to the binocular and so are not easily lost in routine field use. The instrument also comes with the company’s 10-year warranty.

The large and responsive focus wheel on the barr & Stroud Savannah 8 x 42.

The new binocular turned out to be every bit as good optically than the first one I returned! Indeed, it could even be that little bit better! Images are bright and razor sharp, rich in contrast and colour pure. Though it contains no ED elements, the instrument shows only a trace of chromatic aberration, and only if you go looking hard for it. Like I said before, I don’t consider the presence of ED glass as a feature that is necessary on binoculars of this specification. Crank up the power nearer to the resolving magnification, and it’s a different story. But in this realm, what I’m more interested in, and which is far more important in the scheme of things, is how well the binocular is put together.

Roofs are complex instruments, requiring engineering skill and very careful assembly of the components. Some firms know how to do it well, others don’t…..methinks.

The high quality twist up eyecups on the Savannah click securely into place with a loud “thwack” sound. Note the tough, texturised rubber amouring covering the instrument.

My assessment of binocular optics involves the usual procedures employed by other reviewers, but I have also devised much more demanding tests to learn how well the light is being transmitted though the optical train.  What I have discovered is that many purportedly high-end roof prism binoculars (based solely on their recommended retail price) often show considerable flaring and annoying internal reflections when observing strongly backlit daylight scenes. In addition, night time testing on bright artificial street lights and the full Moon also provide solid clues as to what is going on inside the test binocular(which unfortunately, are all hermetically sealed!!).

One particularly stringent test is to direct an intensely bright beam of light from my iphone into the binocular to see how it deals with glare and internal reflections. No roof prism binocular, no matter how well made, can completely pass these tests;

All fall short:- but what astonished me was how well they were suppressed in the Savannah 8 x 42. Unlike many other models, which reveal too much glare and bright ghosting across the field, both my 10 x 50 and 8 x 42 Barr & Stroud instruments came out with truly excellent results! In particular, the degree of glare suppression and control of internal reflections present in the Savannah was fully the equal of a world class binocular: – in this case, the Swarovski 10 x 42 EL Range:. Where you will often pick up diffraction spikes and flaring from bright street lighting in an inferior instrument, as well as contrast-robbing diffused light around such artificial light sources (not to mention internal reflections), my new Savannah 8 x 42 shows up very little. This is easily seen in regular daylight testing, where the images thrown up by the instrument show very high contrast, allowing very fine details to be easily discerned.

Performing a small, bright light test in the comfort of my living room. Note the small amount of daylight left in the room to asist imaging objects immediately behind and around the light source(my iphone torch).

I thought long and hard about why such an economical instrument offered such unreasonably excellent control of stray light, and then I remembered how the same company made high-quality optical instruments for the British navy. Out at sea, where sunlight is strongly reflected off the water, glare suppression would have been a high priority for any optic used for long distance surveillance. Although it remains an interesting conjecture on my part, it could be that the technicians who assemble such binoculars have specialised knowledge on how to keep those internal light leaks at bay. Afterall, once upon a time, not doing so might well have made all the difference between life and death!

Some important details coming through on the focussing wheel. The ocular lenses are hard coated for extra durability.

Whatever the reasons for such optical excellence, the wonderful colour correction, contrast and suppression of stray light make the 8 x 42 Savannah binocular an excellent choice for birders and naturalists. I cannot think of a better instrument – without dropping an additional few grand – to take along with me to observe the deluge of autumnal colours that are only just emerging, as the trees shut down for a long, winter nap. But, as I’ve discovered, the 8 x 42 also delivers knock-out views of the celestial realm!

As I recall, it was with some trepidation that I decided to try the Savannah. I was leary of the advertised field of view -143m@1000m or 8.2 angular degrees. I had learned of other binoculars delivering such enormous fields of view but having disappointing off-axis performance. Better to have a binocular that delivers a smaller field of view with tightly focused stars near the edge than suffer the indignation of seeing those stars swell up in the outer part of the field. It’s just not tennis!

But my fears were completely allayed once I tried them out on the night sky.  I was literally blown away! Not only was the field of view enormous, but it was very well corrected, right to the edge of the field. Believe me, I have experienced some real howlers, where stars are pinpoint sharp in the centre of the field but when moved off axis, the same test stars balloon into enormous blobs when positioned near the field stop. Starfields remain crisp throughout the field of the Savannah binocular making it an excellent choice for casual star gazing.

Although the binocular can be mounted on a monopod for increased stability, I have rarely used it in this capcaity. Instead, I enjoy hand-holding the instrument where the 8x magnification makes it considerably easier to hold steady over a 10x instrument. That said, if I wish to push the instrument to see the very faintest stars, a monopod is a good way to go. Some binocular authorities I have read suggest that you can gain up to 1 stellar magnitude deeper if the image is stabilised.

The very well corrected, ultra-wide field of the Barr & Stroud Savannah  8 x 42  provides stunning views of large clusters of stars. For example, it provides knock-out views of Melotte 20, otherwise known as the Alpha Persei Association, where the field is littered with several dozen hot, white stars varying in glory from the third to the 10th magnitude. But perhaps my fondest night time experience with this wonder binocular was seeing the entire Sword-Handle and Belt stars of Orion in the same field on a cold, dark December evening.  And where my 10 x 50 Sierra binocular can just frame the Hyades, the Savannah frames the same picturesque asterism with plenty of room to spare!

The large, sensibly flat field of the Savannah has proven excellent for watching meteor showers. I just aim it at the radiant and watch to see if some shooting stars flash across the field. I also love exploring the interface between land and sky. Indeed, as described in this blog, the Savannah is my instrument of choice to explore Moon and starscapes rising above trees and buildings near my home. The Savannah has re-kinded my interest in observing the full Moon when the clouds pass over it. I adore the play of light and colour the binocular serves up in its enormous field of view.

The 8 x 42 is always by my side while using my backyard telescopes. It has greatly increased the speed and efficiency of finding faint fuzzies. Once I locate the target with the binocular, the telescope is pointed at the same spot of sky where I can rapidly hone in on the object.

A binocular that doesn’t want to go inside its hard case.

Readers will forgive my rather vaunted praise of this amazing instrument. But I feel it is justified. In an age of con artists and let downs, this instrument is nothing short of a ray of sunshine. It offers exceptional value for money and has sated my desire to acquire anything else in this mid-sized binocular class. I can hand-on-heart recommend it to other observers looking for an excellent all-round binocular for day and night time use. You’ll not be disappointed!

Thank you for reading!

 

Neil English is the author of several books in amateur and professional astronomy.

 

 

De Fideli.

In Search of a Good Pocket Binocular.

Far from the madding crowd.

August 30 2019

Pocket binoculars are a popular choice for many birders, hikers, ramblers and all-round nature lovers who want to get up-close and personal with God’s illustrious creation. If you have scenery like this right on your door step, trust me, you’ll be keen to take along some binoculars to enhance and extend what your eyes can see;

A pocket binocular usually has objective lenses less than 30mm in diameter and offer magnifications anywhere from 7x to 10x. They are small and in general fit inside a pocket, giving rise to their name. Like all other binoculars, pocket glasses come in a range of prices, starting from just a few tens of pounds right up to £1000, depending on the make and model. The cheapest models are to be generally avoided, as they often have very shoddy optics and/or mechanics, but things get very interesting once you move into the mid-priced market, where you can acquire decent optics and mechanics for prices anywhere from £70 up to a few hundred pounds. But is buying a pocket binocular from a reputable optics firm a sure way to get decent quality? I’m going to have to concede that the answer is “no.”

That’s based on my experiences mainly with two models from the well established companies: Bresser(Germany) and Kowa(Japan). Both models were acquired from amazon and possess similar optical specifications, the Bresser Pirsch 8 x 26mm and the Kowa SV 8 x 25mm DCF, which set me back £97.00 and £83.00, respectively. Both models are roof prism designs, have fully multi-coated optics and phase corrected prisms to maximise the amount of light that is transmitted to the eye, and to render colour-true images in bright daylight conditions.

The Bresser Pirsch 8 x 26mm was exciting to unpack, as it looked the bizz from the online images and the specifications promising “premium quality worthy of their prestigious lifetime warranty.” And when I opened up the case to have a look at the binocular, I must admit to being instantly impressed; here was a stylish looking instrument with a beautifully made, ‘Swarovski like’ open bridge design. The focuser was large and constructed from high quality metal. In operation, it was a joy to use, moving with silky smoothness, with no stiction when turned clockwise and anti-clockwise through its travel.

The Bresser Prisch 8 x 26 compact binocular.

All the accessories were of high quality, which included a padded next strap, an oversized nylon case, instruction manual, rubber objective and eyepiece covers, and a lens cleaning cloth.

The twist up eyecups are amongst the best I have encountered, clicking through a number of stages from fully retracted to fully extended.They hold their positions very well, even when significant pressure is applied to them. The dioptre setting is situated in a sensible place; just under the right barrel. It is stiff and once set in place it will not easily budge.

The beautifully designed twist up eyecups are amongst the best I have personally encountered with four positions. Here they are shown fully extended.

Handling this binocular was particularly pleasurable, as the open bridge design allows for firm gripping either with or without gloves, and can easily be focused using one or two hands. The binocular is lighter than it looks: ~ 290 grams

Firm grip: handling the Bresser Pirsch 8 x 26 binocular.

The Baader Pirsch 8 x 26 has outstanding mechanical quality.

The instrument comes with quality accessories, including a padded cary case and quality neck strap.

But mechanics are only half the story of any binocular. How did the optics fare?

Collimation was tested by mounting the binocular securely on a monopod that was firmly sandwiched in place between two planks of wood on my garden fence, and examining the fields of view presented by both barrels of the instrument. This showed that the binocular was indeed well collimated, certainly within factory tolerances. I had no trouble instantly merging the images once the optimum IPD was selected. Close focus was estimated at about 6.5 feet, in line with the stated specifications. So far so good.

The quoted eye relief for the Pirsch binocular is 15.6mm. That should have been plenty good for eye glass wearers. However, I found that only by pressing my glasses hard against my eyes could I observe the full field. It was not comfortable and so I think folk that have to use eye glasses when using this binocular will struggle.

Testing collimation of the Pirsch binocular. And yes, this wee instrument does have a tripod connecting thread!

True to the specifications, the binocular offers a fairly wide field of view. I measured it as about 6.6 degrees(in agreement with its stated FOV of 117m@1000m). Compared with an entry level test binocular with no phase coating(but with fully multicoated optics), the image was better corrected for seidel aberrations across the field of view, revealing noticeably less field curvature, pin cushion distortion and lateral colour than the entry level unit. On axis, no chromatic aberration could be seen at the edges of a nearby telephone pole as seen against a bright, overcast sky, while the control did show a little bit. And while the image looked good in many daylight scenes, it wasn’t long before I discovered that the binocular was not showing the contrast I had been enjoying with my wife’s Opticron Aspheric LE 8 x 25mm pocket binoculars. Looking into brightly backlit scenes revealed a potential problem with the Pirsch; there was some flaring and internal reflections coming through. So that caused me to investigate the matter further.

A cursory examination of the binocular review literature revealed something rather shocking to me. Very few reviewers had the presence of mind to investigate and report back on light leakage within the binocular, which can lead to very incomplete knowledge on how an instrument ought to behave under real-life situations. I consider it essential information for any savvy buyer, as it doesn’t matter how well a binocular is appointed with high-tech features if they can’t manage to adequately suppress stray light in the optical train. To me, this is Optics 101.

Fortunately, this is easily done by carrying out an indoor test using an iphone with its torch turned up to its maximum brightness and examining the in-focus images of how that light is delivered to the eye whilst looking though the binocular in a darkened room a few metres in the distance. You can also glean good information on how well a binocular will deliver by pointing the instrument at a bright street light or the full Moon(this is a considerably less severe test but an important one in any binocular assessment).

Well, the tests were very convicting. Not only was there many bright internal reflections but the Pirsch binocular seemed to be causing bright light sources to become diffused across the field of view, manifesting as a contrast-robbing, circular haze. And it was the same when I pointed the binocular at a bright sodium street light.  I had not seen such terrible control of stray light since the day I tested a very inexpensive Celestron Nature DX 8×25 unit several months back. Needless to say, I was not a happy bunny! Incidentally, even my entry-level control optic showed far less flaring and internal reflections than this purportedly “premium” instrument!

As another control for these tests, I employed my most excellent Barr & Stroud Savannah 8 x 42, which shows remarkably little flare and diffusion of light under the same conditions. Indeed, as I already communicated in a previous blog, this superb instrument possesses the same level of glare and internal reflection control as a Swarovski EL Range 10 x 42 unit I recently subjected to the same tests. The reader will note however, that no roof prism binocular, no matter how well built it is, can completely eliminate such optical side effects.

My control binocular for flare and internal reflection testing; the Barr & Stroud 8 x 42 wide angle, which delivers superbly contrasted images even in harsh lighting conditions.

A curious aside: I wonder will flare and internal reflection testing suddenly enjoy an upsurge on future binocular forums? Hmmm.

I suspect that many of these pocket binoculars are not tested for flaring and/or internal reflections because these small instruments are not recommended for night time use and so any problems they have in this regard might easily slip below the radar. I would check out your instrument to see how it fares in this regard.

For me, a binocular, no matter how small it is, should pass these tests. Remember, we’re not looking for perfection here. If you’re viewing a city scape at night or gazing at the Moon from time to time, your pocket binocular should have minimum light leak and scatter, so that it does not show up in ordinary use. Is that really too much to ask for?

I don’t think so!

Verdict: The Bresser Pirsch 8 x 26 possesses excellent mechanical features but its optics do not match its mechanics. Not recommended. Luckily I had registered the instrument with Bresser to enable the terms of the guarantee to be fulfilled.

So how did the Kowa SV 8 x 25 fare in comparison?

Here is what the company promised.

Well, the package I received came in a small box, containing the binoculars, instruction manual, carry strap and eyepiece caps but no objective covering caps. Unlike the Pirsch, the Kowa is double hinged, which enables you to fold the barrels under the bridge,. making it truly pocketable. You can get an idea of the transportable size difference of both the Pirsch and the Kowa by comparing the size of their carry cases;

The carrying cases for the Pirsch(right) and Kowa binocular(left).

My first impressions of the Kowa SV 8x 25mm binocular were favourable. It is small and rather cute looking. Kowa engineers deliberately designed the instrument to be very lightweight using modern materials. It has a very well armoured body with a tough, coarse- feeling rubberised exterior.

The Kowa SV 8x 25 is a well made binocular using modern materials to reduce the weight. Like the Pirsch, the dioptre setting ring is under the right barrel.

The eyecups twist up and down like the Pirsch  but appeared to have only two fixed settings; fully extended or retracted.  You can however, set the eycups at any position and they will hold their place.

The Kowa glass had what seemed to be immaculately applied anti-reflection coatings on the eye lenses and objectives, which almost disappear when examined head on. Kowa also apply a hydrophobic coating on the elements that allegedly repels water, oil etc, making cleaning the exterior optics that little bit easier.

The kowa ocular lenses have nice anti-reflection coatings. Note the smaller eye lenses on the instrument.

And here is what the objectives look like under inspection. Kowa engineers applied extra armouring around the nicely recessed objectives for added protection.

The objective lenses on the Kowa are nicely recessed and have immaculately applied anti-reflection coatings.

The focuser is made of a soft material that effortlessly moves clockwise and anti-clockwise. I found that it was smooth and very responsive in use, with little in the way of stiction.

A close-up of the Kowa focuser.

Like the Pirsch, the instrument is fully waterproof and is nitrogen purged. The optics are fully multi-coated and a phase coating applied to the Schmidt-Pechan roof prisms. But at this stage in the game, I had learned not to place my hope in an instrument based solely on these claims. I recalled the story of the little Celestron Nature DX which also advertised such advanced optical treatments, but failed miserably in field use.

Like the Pirsch, the Kowa barrels were well collimated and the field of view was found to be slightly smaller than the Pirsch, at just over 6 degrees. But when I began to assess the optics of the unit, I hit my first snag. The smaller eye lenses on the instrument made it very difficult for me to accurately position my eyes and I immediately noticed that I was frequently experiencing black outs as I moved from one daylight target to another. It did have better eye relief than the Pirsch though, allowing those who wear eyeglasses to use it fairly easily.

Worse still, I noticed that when I was observing with the Kowa in bright daylight conditions outdoors, I could see a faint ghosting in the field which would only vanish when I pressed my eyes tightly against the eyecups. The contrast was noticeably better in the Kowa images though, with excellent control of colour and seidel aberrations. But I was worried about the ghosting I saw, and so decided to perform my iphone torch test to see what was what.

Such testing revealed some problems. While the horrible diffused light I saw in the Pirsch was far better controlled(but nonetheless present), the test revealed a pretty bad case of on-axis flaring. My heart sunk as I contemplated the implications of the test. This would also show up in nightime test I told myself, and I waited until the evening to find out for sure.

Turning the unit on a bright sodium lamp all too easily revealed a pretty bad dose of on-axis flaring which ruined the image. And though internal reflections were much better controlled in the Kowa than in the Pirsch, the flaring on bright nocturnal lights was, quite frankly, very annoying and downright unnaceptable. And yet again, my entry-level control binocular fared better than the prestigious Kowa in the same tests.

I really hoped Kowa, a company which enjoys a strong reputation for precision, high-end  sport optics, would be able to deliver a binocular image without this degree of flaring, but  alas, it was not to be.

Visibly upset, I contacted Kowa UK to report the result. They quickly responded and apologised to me for the fault, explaining that this was a very ” unusual” finding.

Well maybe. But it didn’t stop me immediately packing up the instrument and its accessories and returning it to amazon. I received a full refund, but had no interest in  testing out a replacement unit. Once bitten twice shy.

Note added in proof: Control of light leakages bares little correlation to the price paid for these binoculars. For instance, my Barr & Stroud 8 x 42 and 10 x 50 roofs have a retail value of about £130 and £80, respectively, but have excellent control of stray light. If these did so well, why couldn’t the little pocket binoculars deliver?

Ich verstehe nicht.

Another pretender:

Same old same old: the Olympus 10 x 25 has the same optical design as the Kowa SV pocket binocular.

What about the Olympus 10 x 25 WPII?  I took a chance on this product also. Retailing for about £70, it offered all the same features as the Kowa binocular. Indeed it was almost a carbon copy of the Kowa, except for the magnification and focus wheel, but alas it also showed too much daylight glare when pointed at brightly backlit objects, so that went straight back to amazon as well. Though sharp in the middle of its relatively massive field(6.5 angular degrees), the Olympus binocular showed very distorted images in the outer 30 per cent of the same portal. So, not great, either.

An Old Reliable: It’s not all doom and gloom though. Compared with the three binoculars I had evaluated thus far in this blog, my wife’s Opticron LE Aspheric 8 x 25 pocket binocular is in a completely different league optically. With minimum flare, no blackouts and good control of internal reflections, the little classically styled Opticron is very well built and just works, time after time after time.

A classically styled pocket binocular that just works; the Opticron LE Aspheric 8 x 25.

Now a few years old, the Opticron LE Aspheric features multi-coated optics and silver- coated phase corrected prisms. Aspherical ocular lenses produce a very flat field that renders undistorted images right to the edge of the field. And though its field of view is a little restricted at 5.2 angular degrees, it’s a nice tidy portal with very well defined field stops.

The Opticron Aspheric LE has simple twist up eyecups for those who do not use eyeglasses while observing.

The eyecups have just two positions; up or down. With 21mm eye relief, the instrument is extremely comfortable to view through. The double-hinge design does allow the barrels to fold up to pocket size though;

Snug as a bug in a rug.

It has its own built in lanyard so there is no need to fiddle about attaching a neckstrap. The original Opticron Aspheric LE (with the green logo) is a bit on the urbane side though; it is not weatherproof and the outer armouring is smooth and non-texturised. But a few years back, Opticron gave this pocket binocular a bit of a makeover; the new Aspheric LE is waterproof and purged with dry nitrogen, making it that little bit more versatile than the first generation model. Eye relief is reduced to 16mm, which should still be plenty good for all users. It also has new eyecups and a  re-designed focuser. Details can be found here.

Nice big(17mm) eye lenses on the Opticron Aspheric LE make for highly immersive views.

The instrument is more expensive than the Pirsch and Kowa models though; ~£120. But that extra cost does buy you peace of mind, or so I’m led to believe.

I”m going to order up the new model to determine how consistent the quality is. I will report back in a wee while to tell you how I get on with it.

Watch this space!

September 10 2019: Well the new Opticron pocket binocular arrived safely today. So, what was in the goodie box?

The Opticron Aspheric LE WP 8 x 25 pocket binocular and its accessories.

The binocular was purchased from Tring Astronomy Centre, and I elected to have it shipped to me via expedited 24 hour delivery. The cost, including postage, came in at £120. Like everything else I have received from Tring in the past, the product arrived in perfect nick. It was double boxed, witth the package including the pocket binocular, an instruction manual, lens cleaning cloth, and warranty card, and a stylish padded carry case with the Opticron logo on the front. I even received a £75  wine voucher!

The New Opticron Aspheric LE is now water and fog proof.

Unlike the original model, the make and specifications on the new model are embossed on the upper bridge. The armouring is also slightly more texturised than the sleeky, first generation model.

The original model had plastic eyecups, but the newer incarnation has what appears to be a slightly more comfortable rubberised overcoat.

Using the Optricon Aspheric LE WP is child’s play; just twist up the eyecups and they click into place. There are no intermediate settings. If you waer glasses, leave the eyecups down.

I rather like the simplicity of the eyecups on this instrument. There are only two positions: fully extended or fully retracted. The 16mm eye relief is plenty good enough for eyeglass wearers(verified by my own tests).

The focus wheel is larger and a little easier to work with than the original model.That will make it easier to use with gloves on. I did find it to be a wee bit on the stiff side though, but I figure with more use, it will became easier to negotiate.

The newer Opticron Aspheric LE( right) has a slightly larger focusing wheel.

The ocular lenses are the same on both models; good and large and easy to engage with.

Both models have the same optics, including large ocular lens.

The neoprene carry case is very nicely made and fits the pocket binocular perfectly:

A very nicely fitting padded neoprene carry case will keep your optics safe while not in use.

Close up of the Opticron labelled padded case.

You can probably guess by now what I did first: yep, I performed my torch test to see how well stray light was being controlled inside the barrels. Well, it passed with flying colours; not perfect, but perfectly acceptable! Indeed, it was very similar to the results I obtained for the original model. Later, I performed a test on some sodium street lights and the results were very good. Only very slight ghosting and no annoying glare.

What a relief!

Conducting some observations during the day also delivered very pleasing results.The images are very bright, sharp and colour-pure, thanks to good quality glass, anti-reflection coatings and a silver mirror coating on the prisms. Like the original model, backlit scenes show excellent control of glare and certainly enough to satisfy the vast majority of users. The aspheric ocular lenses did a great job maintaining a very flat field nearly all the way to the field stop. Close focus was astonishing! I measured it at just 51 inches (~1.3m), so significantly less than the advertised 2 metres. A nice bonus!

Clearly the quality control on these instruments appears to be very good indeed.

Weighing in at just 291 grams, and with its double hinge design, folding it up and storing it in your pocket is a breeze. It’s nice to have a pocket binocular that does exactly what it says on the tin.

Alas, I was unable to perform my last test on the bright Moon owing to the presence of a weather system (the remnants of hurricane Dorian) passing over Scotland, but the results on stray ligt control gives me no cause to be concerned. It will pass the full Moon test with flying colours!

A quality pocket binocular in the palm of your hand!

A Curious Aside: Here’s a binocular review posted on September 11 2019.

Wow!

The reviewer even conducted tests for glare and flaring etc!

Shockeroonie!

Don’t take my word for it; look at some other reviews of the Opticron Aspheric LE pocket binoculars to better establish a consensus:

Calvin Jones, Irish author, birder and naturalist

Diane and Michael Porter’s Birding Binoculars

Feathersoptics review

 

Conclusions and Lessons Learned:

It is clear that good optical performance cannot be gleaned from checking the specifications of a pocket binocular. Claims of a product offering fully multicoated optics and phase corrected prisms etc count for nothing if they cannot suppress glare and internal reflections to an acceptable degree. In this blog I have sampled but a few models that fell short of my expectations. In the end, only the Opticron Aspheric LE 8 x 25 delivered the readies.

The best way to proceed with acquiring a pocket binocular is to test it out in person, if at all possible, before handing over your hard-earned cash. The reader should also be leary of any binocular review that does not mention or test for glare, flare and internal reflection. This is an essential feature that must be controlled if you are to derive the best performance out of your pocket optics.

Life’s too short to look through bad glass!

Opticron also manufacture a series of more expensive pocket binoculars in their BGAT PC Oasis series. These will also be a good bet, but you’ll have to cough up another £100 to acquire one. I may test one of these models out in the future.

I did consider a few ED models in my quest. For example, the Hawke Endurance ED 8x 25 has a wider field of view and retails for 20 per cent less than the Opticron(which has no ED glass), but is it as well built? And how do the optics fare? To be honest, I don’t know, as there wasn’t any discriminating reviews available for me to make a decision, but they might be worth a punt. I did contact Hawke asking them how well they suppress glare in their small pocket binocular and received a very quick reply. Here is a copy of my correspondence with the company:

……………………………………………………………………………………………………………………..

Dear Sir/Madam
I am writing to inquire about glare suppression and internal reflections in your Hawke Endurance 8x and 10x 25mm pocket binoculars.
I have been testing a few brands and some show very annoying flare and/or ghosting when pointed at a bright street lamp or a bright Moon.
Will your products pass such tests?
I appreciate that no binocular can completely eliminate these but all I am asking for is no obvious ghosting when pointed at the moon or strongly backlit scenes in daylight.
Thanks in advance of your reply.
Sincerely
Neil English.

from: Hawke UK uk@hawkeoptics.com

Hello Neil,

Thanks for your email and interest in Hawke Optics. The internal components of our binoculars are treated to be as glare resistant as possible. We use a combination of matte finishes and ribbed surfaces to prevent a flat reflective surface. However, it will never be possible to completely eliminate reflections like you are talking about and so even with these countermeasures, our binoculars will show some white out when looking towards a bright light source.

Kind regards,

Alex Jenkinson

……………………………………………………………………………………………………………………………….

I wonder if any of you have tested the Hawke model? If so, I’d be very keen to hear from you. Failing that, I might just go ahead and purchase one to do a full review; warts and all.

I would also trust the optics in the Pentax AD bocket binocular, which also retails for about £100. But that’s not based on direct experience with this model, only an inference made from using two other binoculars from their line.

For a few hundred pounds more you can acquire excellent pocket binoculars from the ultra-premium end of the market from Zeiss, Leica and Swarovski. However, I don’t think you’ll notice any big optical differences between the Opticron and these though. The value lies more in their mechanics than anything else.

For me, I feel the Opticron delivers everything I could wish for in a pocket binocular; both mechanically and optically. It’s a quality product that will stand the test of time if looked after properly.

Well, I hope you found this blog to be informative.

Good luck with your quest to find a good pocket binocular!

 

Neil English’s newest title, The ShortTube 80: A User’s Guide, hits the bookshelves in early November 2019.

Post Scriptum: Shortly after local midnight on September 12 2019, I ventured outside to see if I could gain a glimpse of the bright and nearly full Moon, that had just past the meridian and about 17 degrees above the southerly horizon. I compared the Bresser Pirsch 8 x 26 to the Opticron Aspheric LE WP 8x 25. A brisk westerly breeze was blowing, quickly shifting the clouds over and then away from the Moon. During one such clear spell I pointed both instruments at its silvery white face and studied the images.

Result: The Pirsch showed annoying glare and some obvious internal reflections in the field. The glare also brightened the backround sky around the Moon, reducing contrast. However, the Opticron unit showed no visible internal reflections and only slight flaring when the Moon was placed just outside the field. The backround sky around the Moon was much darker to boot, showing clearly superior image quality to the “premium” Pirsch.

 

De Fideli.

Caveat Emptor!

As you may gather, I’ve taken a keen, active interest in testing out binoculars with an aim to providing my readers with good quality products that won’t break the bank. As part of that process, I needed a few entry-level models to compare and contrast them with other products purporting to provide better optical quality. In one transaction, I purchased an Eyeskey labelled 8 x 32 roof prism binocular on August 5 2019 from eBay. It was brand new and set me back £37.79, taking about two weeks to ship directly from China to my home in Scotland.

Here is a photo of what I received:

The Eyeskey Package.

Here is a close-up photo of the Eyeskey binocular; the reader will note the texturing of the armoring and distinctive tripod adaptor cover

The Eyeskey 8 x 32 roof prism binocular.

Here is what it looks like from the ocular end:

Note the plain 8 x 32 & Bak4 Prism labelling on the focus wheel.

And here is a photo of the tethered rubber objective lens covers as well as the thumb indentations on the underside of the binocular:

Note the tethered rubber objective covers and thumb indentations on the Eyeskey.

After inspecting the Eyeskey binocular and its accessories, I recalled another binocular, marketed by a company called Avalonoptics.co.uk, which I had come across in a previous internet search.

Here is Avalon’s 8 x 32 Mini HD binoculars( all images taken from their website):

Avalon 8×32 Mini HD Binoculars BLACK

Here is an image of the entire package:

Here is an image of the writing on the focusing wheel:

Note the thumb indentations on the under side of the barrels on the Avalon:

And here is an image of the tethered objective covers on the Avalon:

 

Next, I took a look at the specifications of both models.

You can view the Avalon specs here

And here are the Eyskey specs( source eBay):

8561-8X32_01

Both claim to be fully multicoated, are nitogen filled and fog proof, but there is no mention of a phase coating on either model.

There is a few differences in the quoted specifications. The advertised field of view is 6.78 degrees for the Eyeskey and 6.9 degrees for the Avalon model; quite close. Eye relief is quoted as 18mm for the Eyeskey and 15mm for the Avalon, but these figures can often be incorrect or at least misleading(as I will explain in another up-and-coming binocular review). The Eyeskey has an advertised weight of 18.3 oz = 519 grams, whereas the Avalon has a quoted weight of 416 grams.

Weight can also be misleading though, as it can vary according to whether you include the lens covers and strap etc.

The boxes look pretty similar with just different logos on them, same goes for the neck strap and generic instruction sheet.

Now for the price comparison:

Eyeskey 8 x 32: £37.79

Avalon 8 x 32 Mini HD: £119(recently discounted 20% from £149)

Finally, have a look at this youtube presentation of the said Avalon Mini HD binocular here.

Is the Eyskey 8 x 32 model worth the £37.79?

I suppose for what you get it’s a bargain.

But what about the Avalon?

I’ll leave that up to you to decide!

Caveat Emptor!

 

Neil English debunks many telescopic myths in his new historical work, Chronicling the Golden Age of Astronomy.

 

De Fideli.

 

The Field of Glory.

Companion under the stars: the Pentax PCF 20 x 60 binocular.

Preamble

Visual astronomy can be enjoyed in a variety of ways. We can use the eyes our Creator designed for us to marvel at the beauty of the night sky. Or we can employ a telescope to get those up-close views, where both resolving and light gathering power are needed to make sense of what we see. But there is also the binocular perspective, which fills a niche set midway between that of the eye and that of the telescope.

On the night of August 25 2019, I found myself doing all three. After an hour of admiring dim and hard to find deep sky objects using my largest telescope; a 12″ f/5 Newtonian reflector, I sat back in my observing chair to drink up the naked eye heavens above me. The air was still, with no wind, and only the occasional screech of a barn owl breaking the silence. After a few months of twilit skies with only the brightest stellar luminaries on display, true darkness had now returned to the landscape. By 11:30pm local time, the bright constellations of Cygnus, Lyra, Hercules and Aquila had passed into the western hemisphere, with Bootes now sinking perilously close to the western horizon. And over in the northeast, Cassiopeia, Perseus and Auriga were making excellent progress climbing ever higher in the sky.  Andromeda and Pegasus were also ripe for exploration. The familiar asterism of the Plough hung low over the northern horizon, far below the North Star, Polaris, around which the great dome of the sky wheels. With no Moon in the sky, and good transparency, the river of light from the northern Milky Way stood out boldly, snaking its way across the heavens from east to west. It was the perfect opportunity to break out my big binocular, a Pentax DCF 20 x 60 and boy did it deliver the readies!

Using a monopod for big binocular astronomy on the go.

As I described at great length in the preamble linked to at the beginning of this blog, the Pentax DCF 20 x 60 combines excellent optics with great mechanical features in a relatively light weight package; ideal for use with a monopod. The instrument attaches in seconds to a strong, high-quality ball and socket mount head and can be transported easily from one place to another. Delivering a pristine, flat field some 2.2 degrees wide, the Pentax had already delivered gorgeous views of the heavens during Winter and Spring evenings, but I had not yet had an opportunity to sample the skies of late Summer/early Autumn with this powerful optical instrument.

My first target was M13, easily found about one third of the way from Eta Herculis to Zeta Herculis in the western edge of the famous Keystone asterism. I had already admired this big and bright globular cluster earlier in the 12″ telescope at high power. The 20 x 60 binocular revealed a bright fuzzy bauble about half the size of the full Moon and neatly sandwiched between two 7th magnitude field stars. Of course, the binocular could not compete with the majesty of such a cluster as presented in a large, light bucket, but it was nonetheless a lovely sight with wonderful contrast against a jet black sky.

I then moved over to Lyra and centered the bright summer luminary, Vega, shining with its intense blue-white hue across the sea of interstellar space, and surrounding it a swarm of fainter suns, including the famous Epsilon Lyrae of double star fame. Moving into Cygnus, I turned the binocular on Beta Cygni, known more commonly as Albireo. With a steady hand, I could easily resolve the beautiful, wide colour contrast double star; marmalade orange and blue-green secondary. Panning about eight degrees due south of Albireo the binocular field soon captured that remarkable little asterism that is the Coathanger (Collinder 339). What makes this a particualrly engaging visual sight is the uniformity of the stars comprising it; most shining with a soft white hue and of the sixth magnitude of glory.

Moving about five degrees to the east of the Coathanger, and forming a neat little right-angled triangle with the stars of Saggita, the celestial Arrow, I chanced upon the large and bright planetary nebula, known commonly as the Dumbbell (Messier 27). Unlike other planetary nebula, M27 is one of the few that present clearly in the relatively low power view of the binocular. Try as I might though, I could not see the hourglass shape of the nebula as seen in telescopes at higher power; it was more or less circular in form, softly glowing against the background sky at magntude 7.4.

I didn’t have to travel far for my next visual treat; M71, a faint globular cluster situated nearly exactly midway between Gamma and Zeta Saggitae. With its population of mostly 12th magnitude suns, M71 presented as a misty patch in a glittering hinterland of August star light.

Adjusting the ball & socket head of the monopod, I ventured back into Cgynus and centred the lovely binocular double,  commonly referred to as 0^1 Cygni. Like a wider version of Albireo, the 20 x 60 binocular presented their fetching colours perfectly, orange and turquoise (magnitude 3.8 and 4.8, resepctively). I could not however clearly resolve the fainter 7th magnitude component parked up against the orange member, which a small telescope so easily shows.

Eager to examine another stellar hinterland, I moved the binocular so that Deneb was centred in the field of view. Well, this binocular portal took my breath away! Hundreds of suns of varying degrees of glory smattered haphazardly across the field, and here and there the excellent contrast of the instrument also showed up some small nebulous patches set adrift among the starry hosts. With its very generous 21mm of eye relief, the big binocular was delivering very comfortable and immersive views. It was almost as if I could reach out my hand and touch the heavens!

With midnight approaching, I noticed that the great square of Pegasus was clearing the rooftop of my house, and a little further to the east, Andromeda, the Chained Lady, had by now gained a decent altitude. Eagerly, I trained the binocular on a foggy patch clearly seen with the naked eye. I had arrived at the Great Andromeda Galaxy (M31). The lenticular shaped core was big and bright and beautifully contrasted against a sable sky, and with averted vision it was not hard to trace the spiral arms all the way to the edges of the field. Its fainter companions, M32 and M110, were also seen with a concentrated gaze, the former being easier to see and just a half an angular degree to the south of M31. M110 proved much more elusive though, being larger and fainter than M32 but nonetheless fairly easy to pick off about a degree away to the northwest of the main galaxy.

Moving into Cassiopeia, the binocular presented field after field of brilliant starlight with a wonderful variety of colours. Many faint open clusters came to life as I inched the binocular through its mid-section; NGC 457(otherwise known as the E.T. Cluster) was very engaging, especially the bright, 5th magnitude white super-giant star marking its southern border, and then on into the heart of M103, a compact little open cluster just to the northeast of blue-white Delta Cassiopeiae. My notes from a good few years back informed me that the cluster presented as unresolved in an inexpensive 15 x 70 binocular, but this instrument, with its significantly higher magnification, was just beginning to hint at some individual stars within the cluster. A comely quartet of stars flanking the southeastern corner of the Messier cluster made the scene especially engaging to study. Panning very slowly eastward through the constellation, roughly from Delta to Epsilon Cassiopeiae, my eyes picked up many faint open clusters, including NGC 44, 663, 559 and 637.

By about a quarter past midnight, Perseus had risen to a good height above the northeastern horizon, and I eagerly sought out the famous Double Cluster(Caldwell 14), easily located as a foggy patch to the naked eye roughly mid-way between Perseus and Cassiopeia. With great excitement, I moved in on my target, all the while bringing to mind the stunning views I had reported with this binocular last Winter. Wow! I wasn’t disaapointed. The entire field exploded with stars of various hues; white, blue-white, creamy yellow and sanguine, the two sumptuous open clusters beautifully resolved with curious fans of stars radiating outwards from their centres. Sharpness was extreme from edge to edge, with the stars presenting as tiny pinpoints. I believe that this 20 x 60 binocular renders these awesome natural spectacles as good as you’ll ever see them; the combination of decent light gathering power and magnification using both eyes is a match made in heaven! This was a pre-season teaser though. The Double Cluster will only increase in majesty, as it continues to climb higher in our skies over the next few months.

Moving to Algol, the Demon Star, I then navigated about 5 degrees west from it, where I was pleasantly surprised by how easily I was able to pick up another lovely open cluster, M34. The powerful double eye on the sky resolved a few dozen members, mostly 7th, 8th and 9th magnitude members sprawled across an area of sky roughly the size of the full Moon. Many fainter members, largely unsresolved by the instrument, gave the cluster a very lively, translucent appearance, a consequence I suppose of the inability of the binocular to cleanly resolve its faintest members, which go all the way down to magnitude 13. Sometimes, not seeing things clearly adds to the visual appeal of deep sky objects.

From there, I moved back to Alpha Persei and placed it at the upper edge of the field of view of the 20 x 60. Even though the binocular has a fairly restricted 2.2 degree true field, it was able to pick up a generous assortment of bright O-B stars at the heart of the moving cluster Melotte 20. It was a beautiful sight!

With the time fast approaching 12:30 am, I picked up the 20 x 60 astride its monopod and moved to the front of the house, where my gaze met with the Pleiades rising above the Fintry Hills to the east of my home. Though it was still at a fairly low altitude, the 20 x 60 produced a draw-jopping view of this celebrated open cluster, its orientation being rather lobsided compared with how it appears later in the autumn. Many of its fainter members were extinguished by virtue of its low altitude, but it was still a magnificent sight. Again I would concede that large binoculars produce the best views of the Pleiads. And it will get better, night by night, as Autumn turns to Winter.

With a waning crescent Moon not far away from rising, I retired from the field of glory with a head full of vivid memories. This was just the beginning though. God willing, it will show me even grander sights as the days continue to shorten through the autumnal equinox and onwards toward the December Solstice.

 

Neil English’s new book, The ShortTube 80, A User’s Guide, will soon be published by Springer-Nature.

 

 

De Fideli.

Test Driving the Swarovski EL Range 10 x 42 Binocular.

The Swarovski EL Range 8x 42 binocular.

For more than a generation Swarovski Optic has been supplying premium quality sports and nature optics to an international customer base. Beginning back in 1935 when Wilhelm Swarovski started manufacturing small 6 x 30 binoculars, his business expanded greatly during World War II and by 1949, Swarovski launched itself as a separate company, manufacturing very high quality binoculars, spotting ‘scopes and rifle sights at their large facility at Absam, Austria. Employing more than 800 employees, Swarovski has a turnover of in excess of 100 million Euro with 90 per cent of its revenue generated from exports.

Swarovski produce a very extensive range of premium quality binoculars for birders, hunters and nature enthusiasts, ranging from small pocket-sized instruments(8 x 25) right up to large 56mm aperture instruments for specialised, low light work.  Having recently re-kindled my interest in using binoculars, I have had the privilege of enjoying two Swarovskis, an older EL 8.5 x 42mm (owned by my coalman, Graham) and a first generation EL Range 10 x 42mm, owned by a neighbour of mine (Ian), both of whom are keen hunters. In this blog, I wish to discuss the latter instrument in some detail.

Introduced in 2011, the EL Range 10 x 42mm features top-notch optics and state-of-the art laser-based range-finding technology that enables the user to accurately estimate distance to any given distance between about 33 and 1500 yards with an error of just +/- 1 yard. In addition, its built-in inclinometer allows angular measurements up to 90 degrees, thereby covering every angle compensation you are likely to use (especially when hunting in mountainous regions). Powered by a CR2 lithium ion battery, up to 1000 measurements can be made before replacing it. The second generation of the EL Range series was introduced in 2015, which offers some improvements over the original, including faster estimation of distance.

Ian very kindly allowed me to borrow his first-generation EL Range 10 x 42 for a short spell. For my tests, I concentrated solely on the optical and mechanical performance of the instrument, which were conducted over the space of 24 hours between July 22 and 23 2019, which included indoor, bright daylight, dusk and night-time observations. For those of you who wish to learn more about its ranging capabilities, check out this link.

The Swarovski EL Range 10 x 42: optical and mechanical excellence.

Mechanical design: The EL Range 10 x 42 weighs in at about 32 ounces. This was surprising given the presence of two prominent arches placed on the underside of the instrument. These apparently increase the stability of the instrument when making hand-held distance estimates.

The underside of the EL Range 10 x 42 has raised arches to help stabilise the instrument while conducting distance measurements

The 10 x 42 Range has individually tunable eyepieces with the dioptre compensation is accessed by pushing up the ring at the base of each ocular. The twist up eyecups are a work of art, plain and simple. Beautifully made, they click up and down effortlessly and hold their positions even when considerable downward force is applied. They can also be unscrewed if they need to be replaced or to access the ocular lenses for cleaning.

The exceptionally well designed all-metal twist up eyecups are a joy to adjust with soft rubber  eye contacts to make viewing as comfortable as possible.

The focus wheel is also a joy to use. With very finely machined threads, focusing from nearby to far away objects is effortlessly achieved via its buttery smooth motions.

The beautifully designed large central focus wheel is buttery smooth with no stiction.

Like all other mid-sized binoculars by Swarovski, the instrument has an open bridge design which is very stable and easy to balance and the well-designed hinge allows for quick and easy adjustment for my optimum inter-pupillary distance. The optics are housed in magnesium barrels to reduce overall weight and are overlaid by a tough, protective rubber overcoat that is very easy to grip. The optics are hermetically sealed and nitrogen purged to prevent any internal fogging. The instrument is water resistant to depths of up to 13 feet.

Overall, I would rate the mechanics on this binocular to be of exceptionally high quality.

Optics: Just like its mechanical excellence, Swarovski spare no expense incorporating the very finest optics inside their binoculars, and by that I mean the highest quality optical glass(which includes extra-low dispersion components) and state-of-the-art anti-reflection coating technology. The prisms are of Bak-4 Schmidt-Pechan design, which require phase coating to optimise light transmission. Swarovski like to think of the entire optical system acting as one collective unit which they call “Swarovision.” The light transmission is 91%( a figure derived from their technical data).

The objective and ocular lenses immediately exposed to the air are also treated with a proprietary coating that repels water, oil and grease. They also will not fog up on cold days if one accidentally breathes on them.

The state-of-the-art anti-reflection coatings of Swarovski objectives. Note also the deeply recessed objectives which cuts down peripheral glare during field use.

After I had made adjustments to the dioptre settings for my own eyes, I excitedly began tests on the 10 x 42 during bright evening sunshine. Examining a range of targets including the top-most boughs of some nearby conifers, rooftops and the broad tree trunk of an old Horse Chestnut tree, I was most impressed at the crystal clear clarity of the images. Comparing these to my own Barr & Stroud Savannah 8 x 42 binocular, which gives a ‘warm’ tone, the Swarovski was more neutral toned in comparison and ever so slightly sharper to my eyes. But what most impressed me was that the image was also a little brighter than my 8 x 42! This became more apparent as the sun began to set and dusky twilight ensued.  If the Swarovski was transmitting 91 per cent of the light collected to the eye, the Savannah was probably transmitting something more like 85 per cent.

Comparing binocular views can be very enlightening. Top: the Barr & Stroud 8 x 42, bottom: the Swarovski EL Range 10 x 42 .

The field of view of the Swarovski is 6.4 degrees, the images being perfectly flat across the entire field thanks to specially designed field flatteners in the ocular lens assembly. This makes the field stop stand out that little bit more than in my 8 x 42 wide-angle Savannah (sporting an 8.2 degree true field). Examining the edge of a telephone pole some 30 yards in the distance revealed a sliver of chromatic aberration in the Savannah but I could discern none at all in the Swarovski.

Edge of field correction was also superior in the Swarovski. Where the Savannah clearly revealed some pin-cushion distortion at the extreme edge of the field, the Swarovski revealed little or none in comparison.

Going indoors for a while, waiting for the sky to get maximally dark, I conducted my iphone torch test to see how both instruments would compare in regards to their ability to suppress internal reflections. This is a severe test on any optic. I darken the room and turned my iphone torch on at maximum brightness. Then, viewing from a comfortable distance, I aimed both instruments at the light to see what was what. A while back, I had tested the Barr & Stroud Savannah 8 x 42 (and the 10 x 50 Sierra made by the same firm) and noted how well they suppressed glare and internal reflections. To my delight, I found both the Swarovsji and the Savannah to reveal broadly similar results; both units very aggressively blocked annoying internal reflections! Note that this test is far more severe than pointing the instruments at a bright Moon. Indeed, some instruments(including some top of the range models) that passed the Moon test faired considerably worse in this more discriminating test.

Star testing and an encounter with a waning Gibbous Moon:

At this time during the summer, the twilight which dominates during late May, June and the first half of July begins to give way to significantly darker skies. So around local midnight, I ventured out again to test the binoculars on some starfields poking through some cloud banks that were beginning to break up as the night progressed. lying on my recliner, I aimed the binoculars on some star fields in Lyra and Cygnus. The view through both the Swarovski and the Savannah was excellent, with the former offering a flatter field from edge to edge. Contrast was excellent in the Swarovski as well, and the stars presented as tiny, sharp pinpoints. It also reached that little bit deeper than the Savannah as one would expect in comparing an 8x optic to a 10x optic of the same aperture. The Savannah, although possessing a wider field of view, also showed some distortion of the stellar images at the edge of the field.

At around 00:45 UT, a bright waning gibbous Moon was rising in the eastern sky and had gained enough altitude to see it from my back garden. Both instruments presented very pleasing views, but with the subtle differences in colour tone and image scale. The Savannah produced a warmer tone with a very slight yellowish tinge in comparison to the Swarovski, which was correspondingly cooler and a more neutral white appearance. The low altitude brought out the usual atmospheric refraction in both instruments. In the Savannah, a very slim sliver of blue was observed around the edges of the Moon, while in the Swarovski the same sliver was more yellow than blue. The greater magnification of the Swarovski was immediately apparent however, where it presented significantly more in the way of crater details than the lower power Savannah.

Before packing up, I enjoyed watching the fast moving clouds passing near and over the lunar image in both instruments, creating a wonderful dispaly of natural colour. It was good to get out and do some observing in a reasonably dark sky once again.

Now, I suppose you are wondering whether I would recommend the Swarovski to a prospective buyer, especially since I do not, in general, have a tendency to use or promote premium equipment. I’m going to say ” yes” with this one, for reasons I would like to outline here.

It boils down to how much you intend to use the instrument. For astronomical telescopes, most folk get to set up and use their gear maybe once or twice a week(if you’re especially keen)  for a few hours at the most, though I suspect that this is probably the exception rather than the rule. If you are a keen glasser however, you will likely use binoculars far more frequently and for long periods of time. The Swarovski is a beautifully made, precision instrument that will endure knocks, extremes of weather and much more besides. It comes with a very nice quality case and  carrying strap and the company stands behind many innovative accessories that will only add to your pleasurable experiences.  It will often be your only companion in the great outdoors. Without a doubt, a premium binocular like this will hardlly ever fail, so you are investing in a durable, high- quality instrument that will grow as your interests grow and diversify.

I can say all of this with absolute confidence. Why? Because within a couple of days of testing both instruments disaster struck with my Savannah.

If you recall, I bought the Savannah second hand from an ebay seller. It worked flawlessly even with continued use every day, for many months. I was intending to bring it along with me to southwest Wales for a family vacation, when the dioptre ring developed a fault. Although it still worked quite well, I found I had to turn it to the extreme end of its travel before getting a well focused binocular image! The failure upset me, but thank goodness, the story had a silver lining.

An Act of Generosity

I contacted Optical Vision Limited(OVL), the company that now owns Barr & Stroud, as well as other small players in the mid-priced binocular market. I explained the problem to them, at which point they asked if I could provide proof of purchase. I then explained to them that I actually bought it used and that I just assumed that the 10-year warranty was transferable to new owners. Unfortunately, OVL informed me that the warranty was not transferable. However, they were aware of my long-standing work for the astronomical community and kindly offered to honour the warranty. Well, the relief on my face was all too clear to everyone and I accepted their gracious offer. I dispatched the instrument by courier to their depot in Bury St. Edmunds, Suffolk, just prior to setting out on our 400 mile journey to Pembrokeshire.

While we were in Wales, OVL contacted me to say that they would be sending me a new binocular to replace the old one and asked if I would choose a day for the courier to deliver the instrument. I arranged to have it delivered the day after our return home.

Sure enough, the new Savannah 8 x 42 arrived in perfect nick. Excitedly, I opened the box to find the brand-new instrument carefully packed inside. I had my new Savannah and it worked perfectly!

After a year of considerable grief in my professional career, something good finally happened!

 

Contentment.

Thank you so very much OVL!

What the experience taught me

I once purchased a pair of perfectly serviceable 10 x 50 binoculars for $30 at an electronics retailer. These binoculars showed that if you choose carefully, you can get good optics for relatively little money. So what do you get if you spend ten times as much? In terms of the actual view, not as much as you might expect. Yes, more expensive binoculars have better optics that will deliver more light to your eyes and sharper images, but the difference is not night and day. What the extra money does buy you is mechanical quality. Expensive binocuars can withstand the inevitable bumps  and knocks of everyday use without trouble, and having focusing mechanisms that are sure and precise.

Gary Seronik, Editor of Sky News and former Sky & Telescope columnist and author of over 200 articles under Binocular Highlights.

This quote from Seronik’s book, Binocular Highlights (2nd edition) is very true. In my case the Savannah binocular (mid-priced in the scheme of things) gives you about 90 per cent of the optical performance of the Swarovski. Yes, the latter is definitely the better instrument, but it is the mechanical design and not the optics where it especially excels. That said, I have become very fond of the Savannah, as it feels right in my hands, and punches well above its weight. I don’t know how the fault with the dioptre ring developed but what I can say is that I will be keeping a very close eye on it. And if any issues arise with it again, you’ll be the first to know!

Second time lucky: fingers crossed!

I am very grateful to Ian for allowing me to test the 10 x 42 EL Range. I now know why he spent so much money to acquire one!

 

Neil English’s new book, The ShortTube 80: A User’s Guide (267 pages), will soon be published by Springer Nature.

 

 

 

De Fideli.

A Great Pocket Binocular: the Pentax DCF LV 9 x 28.

Excellent optical and mechanical quality in a compact size; the Pentax DCF LV 9 x 28. The instrument measures 117 x 115 x 44mm.

The compact binocular market presents a daunting challenge to the would-be buyer. There are just so many models to choose from. By compact, I mean a binocular that can fit in the palm of your hand and possess objective lenses less than 30mm in diameter. I purchased this instrument about eight months ago and have used it extensively on hill-walking trips and nature treks all around the beautiful, verdant landscape of rural and coastal Scotland. And they’ve even come in handy for watching sports events.

During the long and bright summer days, this pocket-sized binocular has excelled as a lightweight optical device to study the Creation at close range or from a distance. As any experienced binocular viewer will tell you, small aperture binoculars like these are all you need when light is abundant. That’s because the exit pupil of most folk’s eyes shrinks during daylight to 2 or 3mm and so using larger aperture instruments offer little in the way of advantage.

The Pentax DCF LV 9 x 28 offers very high-quality optics in a rugged field-friendly design. The objective; a triplet system arranged in two groups is fully multi-coated. The ocular lenses are a five element design(and fully multi-coated) and produce razor sharp images across the vast majority of the field.  The eyecups are of high-quality, rubber-over aluminium design that twist up, allowing the user to use them in any of four different configurations. The instrument sports very comfortable eye relief – 18mm – making them ideal for eye glass wearers.

The high quality twist-up eyecups are sturdy and offer excellent eye relief for all observers.

The eyecups hold their positions very well, even when unreasonable pressure is applied to them and only move when twisted.

The Pentax compact offers a true field of view of 5.6 degrees and a magnification of 9x. I’ve really come to appreciate this magnification, as it offers a real edge over 8x models, which bring finer details into sharp focus. 10x models start introducing too much shake which limits their use during extensive, hand-help outdoor applcations.

The ocular end of the Pentax DCF LV 9 x 28.

The unit is phase coated for bright, crisp imaging and is fully weather proof, being dry nitrogen filled to prevent internal fogging and corrosion. It is also water resistant, and tested at 1m depth for several minutes (JIS Class 6).

Glare and internal reflections are supressed to very satisfactory levels. One design feature to reduce flaring involves mounting the objectives a few millimetres (~5mm) in from the end of the objective barrels.

Recessed objective lenses are a clever way to reduce flaring during bright daylight viewing.

The superior optical design of the Pentax DCF LV 9 x 28 became more evident to me during poor lighting conditions, such as at dawn or dusk, or while viewing targets in a heavily forested location. Cheaper models, such as the Celestron Nature DX 8 x 25, quickly revealed its limitations during these demanding conditions, where the images became overly dim and harder to discern. No such problem with the Pentax unit, where its better coatings and supression of internal reflections made all the difference. And while larger binoculars in the 32 to 42mm aperture range are better for these low-light conditions, I’ve been quite impressed at just how well the Pentax stood up. The images are razor-sharp and colour free with a nice, neutral or ‘cool’ colour tone.

The dioptre setting( the texturised grey ring in the photos) on the Pentax is located immediately under the right-hand ocular lens and has proven to be very precise and largely immune to movement. Indeed, I have rarely felt the need to adjust it since the day the unit arrived here.

What I have especially come to appreciate about this model is the large focusing wheel, which offers very smooth and precise adjustments to focus. Many pocket binoculars have much smaller focusing wheels, making them that little bit more challenging to operate, especially when attempting to image targets moving from fairly close up to far away, or vice versa, like birds in flight, or while using gloves during cold weather conditions.

The large, smooth focusing wheel on the Pentax DCF LV 9 x 28.

Though not the lightest unit in its aperture class (365g), I have found them to be better suited than many lighter models, as the latter tend to be made more flimsily or are too small to fit securely in the hand during prolonged observations. You need a bit of inertia when using pocket binoculars at 9x, and for me, the Pentax provides the ‘Goldilocks’ size and weight to allow me to optimise my viewing experiences. The underside of the binocular has nice thumb indents for secure handling; a useful feature, in the hand.

Thumb indentations on the underside of the binocular make gripping the instrument that little bit easier.

While I  would never consider such a small binocular to be the ideal companion under the stars, I have enjoyed occasional quick looks of the celestial realm with this instrument. Gazing at the Moon is always a memorable experience, the main craters and mountain ranges being crisply defined and without the annoying internal reflections found in other models( the Nature DX was horrendous in this regard). Star fields are faithfully rendered, and provide pleasing images across its 5.6 degree angular field. Chromatic aberration is pretty much non existent as you’d expect from an instrument in this aperture class( indeed many of the so-called ultra premium models in this aperture class do not use ED glass).

The Pentax DCF LV 9 x 28 is fairly expensive, as pocket binoculars go (I actually bought mine in an ex-display sale with a one-year warranty), but I feel it was worth every penny. The peace of mind one gets when using a mechanically sound and optically excellent instrument such as this is definitely real and when one factors in the countless hours it has accompanied me on my long country walks, hikes, during vacations, and attending sports events(my boys are keen footballers, golfers and rugby players), it has already paid for itself many times over.

Since the introduction of the DCF LV range about a decade ago, Pentax has recently re-branded these models as the AD series (details here). I would heartily recommned this pocket binocular to anyone who is serious about making a life-time purchase. Its excellent optics and sturdy mechanical construction will give you years of hassle-free operation even in less than ideal observational conditions.

 

Dr. Neil English has recently re-kindled his interest in binoculars. His latest article, Paradigm Shifts(presenting the latest science against the existence of extraterrestrial life), will be published in Salvo Magazine Volume 50(Fall 2019).

 

 

De Fideli.

Barr & Stroud Savannah 8 x 42 Wide Angle Binocular: Specs & Independent Reviews.

The Barr & Stroud 8 x 42 wide angle: arguably the best bang for buck general purpose binocular in today’s market.

                                                                 Basic Specifications

Type: 8 x 42 mm roof prism

Field of View: 143m@1000m

Eye Relief: 18mm

Eyecups: solid, adjustable, twist up, two positions

Lens Coatings: Fully multi-coated(verified)

BAK4 Prism Phase Coating: Yes

Warranty: 10 years

Close Focus: 1.95m(verified)

Dioptre Compensation: +4 to -4

Focusing system: Central

Dimensions: 152x130x57mm

Weight: 819g

Carry Case: Clam shell type, solid construction

Carry Strap: High-quality padded starp, with B&S logo

Interpupillary Distance Range: 58-75mm

Waterproof: yes, immersion tested at 1.5m for 3 minutes.

Fog proof: yes, dry nitrogen gas filled and o-ring sealed.

Rubberised Ocular and Objective covers: yes

Price:~ £120(UK)

Last year, I wrote a review of the Barr & Stroud Savannah 8 x 42 wide-angle binocular. There I stated that I was very impressed with the excellent optics and ergonomics of the instrument, which surpassed all my expectations, given its very modest price. Since then, I have conducted more testing of this instrument compared with a Swarovski EL 8.5 x 42 (borrowed from my coalman, an avid birder and hunter), where I found the views to be astonishingly similar (as he also verified!!), despite the enormous price differential between the models. These tests convinced me that, like telescopes, you can pay a great deal for brand bragging rights which made me openly question why some folk would fork out between £1000 and £2000 for an instrument that, for all intents and purposes, delivers identical views.

Here I wish to bring you a list of reviews of the Barr & Stroud 8 x42 Savannah from verified purchasers of the instrument, which I can wholeheartedly vouch for, based on my own, extensive field experience with the said instrument:

 

Very sturdy binoculars and rubber covered. Good image quality. Not too powerful where there is movement/shake with unsteady hands but powerful enough to bring images a lot closer and allow close focussing on a tree in the garden watching the wildlife. .At the weekend I saw a white vapour trail from an aircraft really high in the sky but when I looked at it through the binoculars I could make out the colour of the rear of the aircraft. Someone was piloting a single engine plane much lower than the passenger aircraft and could make out it was a middle aged gent pilotting it !! 8×42 are a good all rounder in my opinion and I would recommend these.

Graham Lynch ( January 2016)

 

I have always bought at the cheaper end of the market and have enjoyed bird watching but wanted to buy something that looked good and was the next step up and they didn’t disappoint
They come complete with sturdy case which has a hard shell to protect them, the bins are easy to use and crystal clear and very sharpe for viewing, the 10 year warranty is a nice touch
You can really tell these are proper made they feel sturdy and are going to last a long time
So in reflection I think these are great all round bins that will give you long service.

readanotherone(June 2014)

Read loads of reviews as I wanted an all round pair of binoculars to use when walking the dog and fishing etc when I’m away in the caravan. Ended up ordering these and I was not disappointed. They arrived the next day. They are so easy to use, smooth focus wheel, soft eye covers so I can leave my glasses on. Very sharp view. I can’t imagine why people would pay £1000’s for a pair apart from to say ” I own a pair of ………” for around £100 these are fantastic.

Cookie(January 2015)

 

Bought for viewing wildlife in Namibia. Wide angle, bright, well made, robust and N2 filled. You will not find a better buy. Whilst away I had plenty of opportunity to compare these with some other brands. These are very high quality – right up there with the best. The extra wide angle is nice.

Seashark(February 2014)

 

Bought these bins because I cannot justify the money for Swarovski. I am a photographer and carry bins and leave them lying around and generally abuse them. However, the quality of these bins is exceptional and I am really pleased with them – focus is great and very good in low light. Worth every penny.

Frank G (February 2014)

 

If you’re thinking of buying these Binoculars then don’t think about it just do it. For the money there is nothing to touch them. I am a wildlife skipper and tour guide specialising in White Tailed Eagles and have used these bins for about a year and they are perfect for spotting these well camouflaged birds with a lovely wide angle and very clear stable image. I did have a problem with the pair I ordered but the seller was very quick and efficient with sorting out the issue.

Andy Kulesza(May 2015)

 

Bought a pair of ‘used’ (as good as new) binoculars. Savannah 8 x 42 from Barr and Stroud. The image is extremely clear and accurate, this exceeded my expectation. The wide angle view is one of the finest for bird- and wildlife-watching. Construction is solid and more than adequate for sturdy outdoor use. The focusing is brilliant and very convenient with the adjustment-knobs in their ‘one-hand alignment’. Compliments for Barr and Stroud. I would recommend these binoculars to any-one, without hesitation.

Gerard Schiphorst(April 2013)

Optically superb, nicely balanced and a joy to handle, these are well made and feel like a quality product. Slightly let down by its mean-sized case which is too small to hold the binoculars without closing down the eyepieces each time and struggles to close with the strap attached – a bit of pain.

RPG(October 2014)

Bought these for an upcoming whale-watching cruise, really pleased with them. They feel nice and solid, but crucially the optics are great – bright image, wide angle and very little chromatic aberration. My friend has a pair of Minox HG 8×43 and we both agreed that the Barr & Stroud Savannah 8×42 have better optics, after doing a side-by-side comparison of the two.

Andrew Hart( March 2019)

Love them, bought for my Mum for Christmas but i will be purchasing another set for my self. Not too heavy, nice to handle, picture quality brilliant so clear, colours sharp, easy to adjust.

Gillian(January 2015)

These are just the nuts anyone wanting good clear images go for it.
Sometimes a wall support or similar is useful but can be hand held with not much problem.

Twe man(July 2015)

The finest binoculars I have ever used. The images are crystal clear with no blurring at any distance even when watching wildlife in flight.

stephen(July 2018)

excellent value and quality – good step up from previous 8×25 binos and much more substantial build quality

JRAC(July 2014)

 

Great binoculars for some one wearing glasses. Good and solid for the price.

smart(December 2014)

 

Great value for money, really pleased with the quality. No instructions in my box, after an email to the seller I received a link to a web page for instructions.
JW(March 2015)
Was advised these were good. I wasn’t disappointed, excellent binoculars came with smart case and well protected am very pleased with them
Annie(April 2013)
We bought a pair of Barr and Stroud 8×32 Sierra binoculars earlier in the year and were very impressed. On the basis of this we ordered a pair of the 8×42 Savannahs. These are another step up. Bright even in poor light and quite breathtaking at times. The only very minor negative is that they initially seem a little heavy. At the price they seem to be remarkable value.
Wauno(December 2011)
The upsides greatly outweigh the downsides of these binoculars, they produce a clear, bright image and are a joy to use. Downsides, well if I’m being fussy there’s nowhere for the neck strap of the binoculars to go when in the hard case, so it ends up being scrunched up which is a shame as it’s a nice strap. They’re also pretty heavy and the manual is a bit generic so it doesn’t specifically apply to this binocular, as such it can take a bit of working out (a bit disappointing for a premium brand and price). Other than that they’re very impressive indeed, as I said in the title I’m looking forward to plane/bird spotting with them in spring and taking them abroad with me.
Shuester( February 2014)
Purchased these glasses after researching various lines. My only gripe was the carrying strap coming away from the case on their first trip out. this was obviously a fault on the rivet that holds the strap to the case. I contacted Barr &stroud and they sent me a new case within a couple of days. The glasses themselves are excellent, just what I needed, very good quality, and have a good grip to them.
David Redshaw(July 2013)

Great quality for the price, beats optic that cost way more, thumbs up from me.

Buy if you want a very good binocular at a even greater price

Brian Steffen (February 2103)
The only reason I am not awarding this purchase 5 stars is because I never award anything 5 stars. That said, delivery was prompt, the binoculars arrived in pristine condition, and they suit my purpose well. I use them mainly to observe the birds and other wildlife in my garden and I also take them on country walks with me, again, to observe wildlife. I am no expert, but I am very happy with what I have. Well done, Barr and Stroud!
Ava(July 2013)

As others have said these are amazing Binoculars and quite possibly the best in their class.

On top of that however is the aftermarket customer service.

I bought these in 2013. Last month the diopter focus ring broke on it’s own. I emailed B&S’ parent company who deal with support and after sending them the purchase email for proof of purchase they told me to post the bino’s to them.

Today I got a package – not my repaired bino’s like I asked, but a brand new pair instead.

I am well chuffed right now. Turns out they have a 10 year guarantee and B&S honour it superbly.

Syrio(August 2016)
After a few evenings of on-line research, I purchased a pair of these and have not been disappointed. Great value and wonderful clarity of vision. Delighted with them and would recommend them. I didn’t realise how little – or how much you could pay for binos. I have used a pair of Swarovskis of similar magnification and these, for me, are as good. If there are differences, they may be slight and indiscernible – apart from the price difference.
If you are inclined to buy these, I would join with others who have commented favourably on them and would recommend them without hesitation.
They also come with a decent case, strap and a long term guarantee.
Amazon Customer(April 2017)
I have used these binoculars on safaris for the past year and are very impressed with them. The image quality and field of view is excellent even in low light conditions. In fact I had the chance to buy a reduced pair of Carl Zeiss ones, but after comparing both, there was no noticeable difference with the Barr & Stroud ones so kept them instead. They are easy to hold in one hand and the lens caps can be secured to the strap so you don’t lose them. For the money these are great binoculars and would not hesitate in recommending anyone buying.
Leeson(November 2015)
Average Amazon Rating: 4.8 out of 5.0 from 30 reviews.

Oh I do like to be beside the sea side……ken.

Well, I hope these testimonials have increased your buying confidence about this remarkable product. I can personally vouch for its extraordinary performance by day and by night. In a time when con artsts abound, you can get what you paid for and much more besides.

 

Thanks for reading!

 

Dr. Neil English is the author of several hundred optics and astronomy related articles and is the author of several books in amateur telescope optics, history  and space science.

 

De Fideli.

Astronomy with an Opera-Glass: Redux.

A trip down Memory Lane with a grand old book & opera glasses.

 

Astronomy With an Opera Glass (1888) by Garrett P. Serviss

Brief biographical outline: Garrett Putnam Serviss was born on March 24 1851 in Sharon Springs, New York, and educated at Johnstone Academy, New York. After finishing high school, Serviss entered the newly established Cornell University in 1868, graduating with a B.S. degree in Science with honours in 1872. During his time at Cornell, Garrett’s flare for the written and spoken word flourished, so much so that he won awards for poetry. After graduating, Serviss enrolled at Columbia College Law School and in June 1874, received his LL.B and shortly thereafter was admitted to the New York State bar. But practicing jurisprudence as a profession proved to have little appeal to the young man, so he tried his hand at journalism, accepting a job as a reporter and correspondent for the New York Tribune, which he pursued for two years. In 1876, he secured a job at The Sun ( not to be confused with the filth-filled modern newspaper bearing the same name!), becoming copy editor of the paper after just a few years of service. It was during his time at The Sun that Serviss began writing popularised science articles and in particular, a string of articles on amateur astronomy. Indeed, he was so successful in his popuular science writings that his employers created a special role for Serviss as ‘Night Editor,’ a post he maintained for ten years, from 1882 through 1892.

Like so many astronomy enthusiasts, Serviss’ interest in the celestial realm began in childhood on his parent’s’ rural farmstead, where his young eyes would have beheld the preternatural beauty of the night sky, arching from horizon to horizon. As his notoriety grew, Serviss was sought out by a growing fan base, who invited him to give public lectures in astronomy aimed at a lay audience. This allowed him to travel the length and breadth of the country and even on trips abroad to evangelise his love of the night sky. His great success as a science communicator led him naturally to a career as a professional writer, turning out a string of magazine articles and books; both fictional and non fictional, including A Trip to the Moon, Pleasures of the Telescope, and Astronomy in a Nutshell. Arguably his greatest and most far-reaching work in amateur astronomy was his Astronomy with an Opera Glass, which was first published in 1888, the subject matter of this blog.

Garrett P. Serviss (1851-1929).

Serviss was, through and through, a man of the great outdoors, enjoying hill walking and mountain climbing well into his autumn years. One of his greatest personal acheivements was to reach the summit of the Matterhorn in the Swiss Alps, which he accomplished aged 43 years. “It was done,” he said, “in an effort to get as far away from terrestrial gravity as possible.”

Among his other creations is a “Star and Planet Finder:” a forerunner to the modern planisphere, which he marketed in collaboration with a one Mr. Leon Barritt, which proved to be an indispensable science tool for school children throughout the United States. Serviss married Miss Eleanore Belts and together they had a son, Garrett P. Jnr., who excelled at athletics, winning the silver medal for his country in the High Jump at the 1904 Olympic Games in St. Louis. Sadly, Eleanore died in 1906, and just two days before Christmas 1907, his son also died whilst attending Cornell University.

In later life, Serviss re-married a Madame Henriette Gros Gatier, who hailed from Cote d’Or, France, raisng her two children to adulthood. The recipient of many literary and scientific honours, Serviss was well travelled and comfortably well off for much of his long life. He died aged 78 years, survived by his second wife, stepdaughter and stepson.

Overview of the Book: Astronomy with Opera Glasses: A popular Introduction to the Study of the Starry Heavens With the Simplest of Optical Instruments, was originally published in 1888 by D. Appleton & Company, London. This author will be making use of a high-quality modern re-print by Forgotten Books. The interested reader can also access an online version of the manuscript which can be perused here. 

The book consists of a short introduction, followed by five chapters covering the four seasons, as well as a chapter dedicated to the Moon and the planets. It is a short book in the scheme of things, with just 154 pages.

Introduction:

Stargazing was never more popular than it is now. In every civilized country many excellent telescopes are owned and used, often to very good purpose, by persons who are not practical astronomers, but who wish to see for themselves the marvels of the sky, and who occasionally stumble upon something that is new even to professional star-gazers. Yet, notwithstanding this activity in the cultivation of astronomical studies, it is probably safe to assert that hardly one person in a hundred knows the chief stars by name, or can even recognize the principal constellations, much less distinguish the planets from the fixed stars.And of course of the intellectual pleasure that accompanies a knowledge of the stars.

Page1

………………………………………………………………………………………………………………………..

Author’s comments: To me, the written and spoken word of the English language reached its zenith at the end of the 19th century, during what we might call today the Late Victorian era. Back then, morals were clear, unambiguous and understood by all and sundry. Men were men and women could be women. Granted, life was considerably harder than it is today, but it was also more purposeful with it. People had a clear idea of what their roles were in an ordered and harmonious society; a society that cherished self sufficiency and honest work. Garrett Serviss, in his elegant writings from this long forgotten era in human history, provides us with a glimpse of what the glory of the heavens meant to a man of letters. But like so many men of his ilk, Serviss can trace his earliest days to humble beginnings on a rural farmstead run by his family. The stars were a comfort to those agrarian people, who still looked to them as signposts or timepieces, marking the passage of the seasons; auguring the time of sowing, reaping and threshing.

……………………………………………………………………………………………………………………………….

Continuing the introduction, Serviss calls to mind the brilliant apparition of Venus in the early summer of 1887, when its great white light illumined the sky over Brooklyn Bridge. Many individuals, so Serviss informs us, thought it was the light from the Statue of Liberty. He continues;

And as Venus glowed in increasing splendor in the serene evenings of June, she continued to be mistaken for some petty artificial light, instead of the magnificent world that she was, sparkling ou there in the sunshine like a globe of burnished silver. Yet Venus as an evening star is not so rare a phenomenon that peple of intelligence should be surprised at it.

pp 2

To Serviss, the general ignorance concerning our nearest planetary neighbour provides an excellent backdrop for what he considers to be an even deeper ignorance of the stars, “the brother of our great father, the Sun.”  Serviss links this perceived indifference to the stars to the largely mathematical nature of professional astronomy which tended to intimidate those without a penchant for precision and calculation. Luckily, though Serviss was undoubtedly acquainted with some advanced technical learning, the methods in this work entirely dispense of any need for such erudition.  The heavens have a natural beauty that appeals to the human mind, whose heart has a deep longing for eternity, as King Solomon of old so eloquently expressed in the Book of Ecclesiastes (3:11).

Serviss also has the presence of mind to allay fears that a sound knowledge of the heavens can only be achieved by possessing a large and expensive telescope:

Perhaps one reason why the average educated man or woman knows so little of the starry heavens is because it is popularly supposed that only the most powerful telescopes and costly instruments of the observatory are capable of dealing with them. No greater mistake could be made. It does not require an instrument of any kind, nor much labor…..

pp 3

……………………………………………………………………………………………………………………………….

Author’s note: How refrseshing it is to read such words, living as we are in a world driven by the ugly sceptre of materialism. This author became aware of this as he spun his own elaborate web of materialism, acquiring ever more costly telescopes in the somewhat pretentious and utterly mistaken view that one must ‘pay to play’. Thankfully, he liberated himself from that deadly entanglement and now enjoys good but modest instruments in his pursuit of heavenly treasures.

Happy is he with his lot.

……………………………………………………………………………………………………………………………….

And with the aid of an opera-glass most interesting, gratifying, and, in some instances, scientifically valuable observations may be made in the heavens. I have more than once heard persons who knew nothing about the stars, and probably cared less, utter exclamations of surprise and delight when persuaded to look at certain parts of the sky with a good glass, and thereafter manifest an interest in astronomy of which they would formerly have believed themselves incapable.

pp 3-4

………………………………………………………………………………………………………………………………

It is at this juncture that Serviss begins to describe the simple optical accoutrement with which he weaves his inspiring allegory of the starry heavens; the opera-glass..

First a word  about the instrument to be used. Galileo made his famous discoveries with what was, in principle of construction, simply an opera glass. The form of telescope was afterward abandoned because very high magnifying powers could not be employed  with it, and the field of view was restricted. But, on account of its brilliant illumination of objects looked at, and its convenience of form, the opera glass is still a valuable and, in some respects, unrivalled instrument of observation.

pp 4

………………………………………………………………………………………………………………………………..

Author’s note: By the time Serviss penned these words, the Galilean telescope was long relegated to a mere historical curiosity, owing to the introduction of the achromatic doublet which offered far superior performance in terms of correction of chromatic aberration, coma and astigmatism, and allowing far higher magnifying powers to be employed. Binoculars had ‘evolved’ * considerably too , even in the case of the humble opera glass as he describes in the next few paragraphs of the introduction.

*More a case of intelligent design than ‘blind evolution’ surely?

………………………………………………………………………………………………………………………………..

In choosing an opera-glass, see first that the object-glasses are achromatic, although this caution is hardly necessary, for all modern opera-glasses, worthy of the name, are made with achromatic objectives. But there are great differences in the quality of the work. If a glass shows a colored fringe around a bright object, reject it. Let the diameter of the object-glasses, which are the lenses in the end furthest from the eye, be not less than an inch and a half. The magnifying power should be at least three or four diameters.

pp 4

……………………………………………………………………………………………………………………………….

Author’s note: A bona fide Galilean binocular would have consisted of a singlet convex objective and a singlet concave element as the eye lens. Yet, to a contemporary of Serviss, even at the extremely low powers delivered by such a device, chromatic aberration would be very objectionable and a very poor choice for the purposes of exploring the night sky.


Serviss continues by demonstrating to the reader a simple way to estimate the magnifying power of his/her opera-glass, by focusing on a brick wall and estimating “how many bricks seen by the naked eye are required to equal in thickness one brick seen through the glass.” This is fairly easily achieved by holding the opera-glass up to one eye whilst leaving the other free to image the unmagnified view. With a few second’s practice, one will be able to simultaneously image both the magnified and naked eye image, allowing one to make a good estimate of how much magnifying power the instrument is delivering.

The instrument used by the writer in making most of the observations for this book has object-glasses 1.6 inch in diameter , and magnifying power of about 3.6 times. See that the field of view given by the two barrels of the opera-glass coincide, or blend perfectly together. If one appears to partially overlap the other when looking at a distant object, the effect is very annoying. This fault arises from the barrels of the opera-glass being placed too far apart, so that their optical centers do not coincide with the centers of the observer’s eyes.

pp 4

…………………………………………………………………………………………………………………………………

Author’s note: For those who are interested in the development of the binocular through history, this resource was found to be quite authoratative. There is also an excellent youtube presentation of early binoculars available for viewing here and its follow-up here.

 

Overview of the author’s instrument: While rummaging through an antique shop in the picturesque old English market town of Kendall, in the Lake District, Cumbria, the author’s wife spotted a curious leather case inside of which was found a dusty Galilean binocular. Prizing it out of the case, this author briefly tested it by focusing on a clock-face about fifty yards distant. The image was fairly dim, owing to the amount of dust on the lenses, but to his delight, the individual barrels were set just about at the optimal interpupillary distance to bring both eyes into a single, circular light cone. The focusing mechanism was found to be a bit stiff and clunky but still adequate for general use, and the lenses were pristine enough for him to take the decision to purchase the instrument and its brown leather case, all for the princely sum of £7.

What follows here is a series of photographs of the instrument for the interested reader.

The dusty object glasses on the binocular.

 

The object glasses were measured to be 44mm in diameter, or 1.73 inches; which exceed Serviss’ minimum recommendations!

The instrument has a neat pair of retractable lens shades.

 

The instrument had a nice set of retractable lens shades. which could also double up as makeshift dew shields, which would ultimately come in handy during longer periods of field use.

The instruments were apparently manufactured in France.

 

The instrument has a “Made in France” inscription annexed to the left-hand barrel of the binocular but no manufacturer name was apparent. Curiously, the high-quality leather case accompanying the binocular is stamped “Made in England.” Somewhat puzzled, more inscriptions were found whilst racking the focus wheel outwards;

Racking the eyepieces outward uncovers a “War Office” stanp on one of the barrels.

 

When the eye lenses were racked outwards using the central focusing mechanism, the inscription “War Office” was found on the left barrell whilst the right barrel had ” Model” but no further information could be discerned.

With this information, it became somewhat clear that these were World War I binoculars. Since France had a technological edge over Britain in the production of high-quality optical glass up to the beginning of the 20th century, it was reasonably assumed that there was a division of labour amongst these war-time allies, with the leather case being manufactured in England. Consulting an online forum dedicated to the Great War, confirmed the author’s suspicion of the division of labour adopted by Britain and France during World War I. Ascribing a date of manufacture corresponding to World War I was further substantiated by the uncoated lenses used in the instrument. Anti-reflection coating technology was still a few decades ahead when these binoculars were being made.

The instrument is constructed mostly of metal parts but the lens shades and the central focusing wheel look as though they were made of the earliest commercial synthetic polymer, Bakelite, which was used extensively after 1909. Source here.

The author then went about dismantling the binocular to clean the optical surfaces. Intriguingly, the instrument was very easy to take apart so that lenses could be cleaned before use;

The innards of the Galilean binocular with a simple cylindrical light baffle placed immediately ahead of the eye lens.

 

Before and after cleaning the object glasses.

 

After carefully cleaning the lenses and putting it all back together again, and tightening up the screw which adjusts the tension on the focusing wheel, the author was delighted by how much esier it was to use, with brighter and more crisp images to boot. The instrument was now ready for field use.

Preliminary testing of the instrument  allowed this author to estimate its magnifying power at about 3.5x, just about the same as Serviss’ original instrument. Further tests on the night sky allowed him to estimate the field of view offered up by the instrument. Turning to the handle of the Ploughshare showed that the field glass was able to just about fit the stars Mizar and Alioth in the same field. Yet another test showed that the instrument was able to fit most of the main ‘V’ of the Hyades star cluster in Taurus, allowing him to estimate its field of view to be ~ 4.5 +/- 0.1 angular degrees; considerably less than a modern binocular but adequate enough to pursue this project.

There is no facility to adjust the interpupillary distance on this instrument or to adjust one ocular independently of the other, but this was not found to be an issue. Clearly, this was a no-frills instrument designed for basic use. There is no lavish overlaying of mother-of-pearl or some other ornate covering on this instrument like so many other beautiful Galilean binoculars dating from the late 19th century and early 20th century, but this is entirely in keeping with its intended use. And while it would be easy to get carried away, as it were, and imagine that the instrument was actually used on the battle front, this author was content with entertaining the idea that it might have only seen use by ordinary civilians.

In use, the ‘opera-glasses’ are not too lightweight. If they were, they would pick up the jitters from the author’s hand-holding all too easily but nor are they too heavy to render prolonged field use a chore. There is a lot to be said for field glasses that are ‘just right.’

The author was over the Moon with his purchase. This was a genuine example of an instrument described by Serviss, allowing this author to authenticate the literary descriptions proferred in the work. This is an important issue going forward; to really experience the visual sensations of a Victorian amateur, one ideally has to use an instrument from the same period, or as near as can be. There is little point in claiming that one has the heart of a Victorian observer without also using instruments that would have been right at home in the same period. Doing it any other way is little more than cheating lol!

Now we are ready to enjoy the night sky as Serviss may have viewed it through his simple opera-glasses. Since each chapter of the book can be enjoyed independently of the others, for convenience, this author will commence with an exploration of the autumnal (fall) night sky (Chapter III) since this is the season in which this blog was first initiated.

…………………………………………………………………………………………………………………………..

Chapter III The Stars of Autumn

Covering pages 60 through 88

It is certainly true that a contemplation of the unthinkable vastness of the universe, in the midst of which we dwell upon a speck illuminated by a spark, is calculated to make all terrestrial affairs appear contemptibly insignificant. We can not wonder that men for ages regarded the earth as the center, and the heavens with their lights as tributary to it, for to have thought otherwise, in those times, would have been to see things from the point of view of a superior intelligence. It has taken a vast amount of experience and knowledge to convince men of the parvitude of themselves and their belongings. So, in all ages, they have applied a terrestrial measure to the universe, and imagined they could behold human affairs reflected in the heavens and human interests setting the gods together by the ears. This is clearly shown in the story of the constellations.

pp 61

Garrett Serviss, writing as he was at the end of the 19th century, held fairly typical ideas for his time regarding the plurality of worlds. He, like so many of his contemporaries, believed the vastness of the starry heaven pointed to humanity’s mediocrity (‘parvitude’) in the scheme of things. Although he does not explicitly express it, he probably believed life was commonplace in the Universe. Back then, scientists were totally ignorant of the sheer complexity of even the simplest living cell- equivalent to that observed in the largest of human cities –  and so was not in a position to see the incredible unlikelihood of something as complex as a living thing coming into being without the mediation of an intelligent agency. Today, the consensus appears to be shifting considerably from this scientifically naive view of the ubiquity of life on other worlds, especially now since a great deal more scientific evidence has come to the fore strongly suggesting that life on Earth did not evolve in any Darwinian sense. As this author has explained elsewhere, Serviss’ view of humanity as “contemptibly insignificant” is demonstrably false. We are, almost certainly, the only sentient creatures ever to have been created aside from the angels (the host of heaven).

The tremendous truth that on a starry night we look, in every direction, into an almost endless vista of suns beyond suns and system upon systems, was too overwhelming for comprehension  by the inventors of the constellations. So they assumed themselves, like imaginative children, as they were, by tracing the outlines of men and beasts formed by those pretty lights , the stars. They turned the starry heavens into a scroll filled with pictured stories of mythology. Four of the constellations with which we are going to deal in this chapter are particualrly interesting on this account. ….The four constellations to which I refer bear the names of Andromeda, Perseus, Cassiopeia and Cepheus, and are sometimes called, collectively, the Royal Family.

pp 62-63.

……………………………………………………………………………………………………………………………..

Author’s note: The constellations that Serviss has chosen to discuss at length are prominent in the skies of early autumn and are especially well placed at the latitude this author observes from:- 56 degrees north. Indeed, they are better placed in his skies than they were for Serviss, who presumably would have observed from mid-northern latitudes and afford a wealth of objects that can be studied with the opera-glass.

……………………………………………………………………………………………………………………………….

Maps 14 and 15, presented on page 62 and 64, respectively, highlight the main constellations visible at mid-northern latitudes throughout September and October. Only the far southerly constellations are out of reach of the author’s gaze. Before discussing the Royal Family, Serviss enters into a brief but fascinating discussion on the southerly constellation of Capricornus, the most diminutive constellation of the zodiac,with a particular mention to both Alpha and Beta Capricorni. He writes:

The stars Alpha, called Giedi, and Beta, called Dabih, will be recognized, and a keen eye will perceive that Alpha really consists of two stars. They are about six minutes of arc apart, and are of the third and the fourth magnitude, respectively.These stars, which to the naked eye  appear almost blended into one, really have no physical connection to each other, and are slowly drifting apart.

pp 65

 

Serviss then discusses the star Beta Capricorni.:

The star Beta, or dabih, is also a double star. The companion is of a beautiful blue colour, generally described as “sky blue.” Is is of the seventh magnitude , while the larger is of  magnitude three and a half. The latter is golden yellow. The blue of the small star can be seen with either an opera- or field glass.

pp 65-6

……………………………………………………………………………………………………………………………….

Author’s note: This author has always referred to Alpha Capricorni as ‘Algedi’, which in Arabic means ‘little kid.’ Serviss, on the other hand, chooses to use a variation of this appellation; ‘Giedi.’ Being very low in the skies of central Scotland, the duplicitous nature of this star is exceedingly difficult to discern with the naked eye, even on the steadiest of nights. Indeed, they are just about half the separation of Mizar & Alcor in the handle of the Ploughshare, for comparison. The opera-glass however, makes light work of showing two yellow suns, the brighter being +3.6 (Alpha-1) and the fainter +4.3 (Alpha-2). This is a wonderfully complex system for double- and mutiple- star enthusiasts located at more favourable latitudes further south, where each of these stars is found to be double in a small telescope. Alpha 1 & 2 are known as an optical double, as the stars are located at greatly different distances; 106 and 560 light years, respectively, and by chance alone are located along our line of sight

In the same field about 2.5 degrees further south, you will be able to make out the golden tint of third magnitude Dabih (Beta Capricorni). In modern 10 x 50s, it too is revealed to be a double star, the companion being of the sixth magnitude of glory. Alas, the low power of the opera-glass, as well as the large brightness differential between the two, not to mention its low elevation above the horizon, makes this very difficult, if well nigh impossible to discern. What can you make out?

………………………………………………………………………………………………………………………………

On page 65, Serviss also mentions a curious thought entertained by Sir John Herschel regarding faint companions to bright stars:

A suggestion by Sir John Herschel, concerning one of these faint companions, that it shines by reflected light, adds to the interest, for if the suggestion is well founded the little star must, of course, be actually a planet, and granting that, then some of the other faint points of light seen there are probably planets too.

pp 65

This is clearly an erroneous conclusion, as Serviss points out:

It must be said that the probabilities are against Herschel’s suggestion. The faint stars more likely shine by their own light.

pp 65

This just goes to show that even great astronomers can be dead wrong! Having said that, it is possible to see Earth-sized objects at stellar distances. Take the famous ‘pup,’ the faint companion to the Dog Star, Sirius B, for example, which can be seen in a 3-inch telescope in the current epoch. The companion, a white dwarf star, is incredibly small and dense but highly luminous!

 

With the most powerful glass at your disposal, sweep from the star Zeta eastward a distance somewhat greater than that separating Alpha and Beta, and you will find a fifth-magnitude star beside a little nebulous spot. This is the cluster known as 30 M, one of those sun-swarms that overhwelm the mind of the contemplative observer with astonishment, and especially remarkable in this case for the apparent vacancy of the heavens immediately surrounding the cluster….

pp 66

………………………………………………………………………………………………………………………………..

Author’s note: Throughout much of the 19th- and early 20th centuries, the Messier objects were denoted by a number followed by the capital letter, ‘M,’ in contrast to today, where the letter ‘M’ precedes the number. M30 (a bright, 7th magnitude globular cluster located some 26,000 light years away) can indeed be picked up as a distinctly non-stellar blob in an opera-glass but its full glory can only be appreciated with a modest sized telescope and high magnifications. The fifth magnitude star Serviss is likely referring to is 41 Capricorni.

……………………………………………………………………………………………………………………………

Serviss then moves from Capricorn to Aquarius, situated to the northeast of the latter and more accessible to observers located at high northerly latitudes. Serviss launches into an interesting discussion of the mythology related to the celestial Water-Bearer, both in ancient cultures and in more recent Arabic lore.

The star Tau is double and presents a beautiful contrast of color, one star being white and the other reddish orange- two solar systems, it may be, apparently neighbors as seen from the earth, in one of which daylight is white and in the other red!

pp 68

Tau Aquarii is indeed a beautiful and easy sight to behold in the opera-glass, with both stars being separated by about 0.65 angular degrees. Serviss’ fecund imagination goes to work here as he rightly considers the colour these stars cast on the landscape of hypothetical planets that might exist there.

Serviss then discusses the fascinating 8th magnitude object in Aquarius that we know today as the Saturn Nebula (NGC 7009), an appellation first bestowed upon it by the Third Earl of Rosse (Birr, Ireland).

Point a good glass upon the star marked Nu, and you will see, somewhat less than a degree and a half to the west of it, what appears to be a faint star of between the seventh and eighth magnitudes. You will have to look sharp to see it. It is with your mind’s eye that you must gaze, in order to perceive the wonder here hidden in the depths of space. The faint speck is the nebula, unrivalled for interest by many of the larger and more conspicuous objects of that kind. Lord Rosse’s great telescope has shown that in form it resembles the planet Saturn; in other words, that it consists apparently of a ball surrounded by a ring……..If Laplace’s nebular hypothesis, or any of the modifications, represents the process of formation of a solar system, then we may fairly conclude that such a process is now actually in operation  in this nebula in Aquarius, where a vast ring of nebulous matter appears to have separated off from the spherical mass within it.

pp 68-9

…………………………………………………………………………………………………………………………….

Author’s note: The visualisation of the Saturn Nebula with the opera glass is certainly possible but it only presents as a very faint 8th magnitude ‘field star’. Serviss, writing at the time when modern astrophysics was in its infancy, had no idea that what he was describing was not, in fact, a solar system in formation, but one rather that was in the process of dying. The Saturn Nebula is a prominent planetary nebula, a geriatric star in its final death throes, as it sheds its outer atmosphere to the great, cold dark of interstellar space.

………………………………………………………………………………………………………………………………

On page 69, Serviss invites us to examine the star Delta Aquarii with the opera glass. At magnitude + 3.3, it shines with a blue-white hue. It is here, so Serviss informs us, that Tobias Mayer ” narrowly escaped making a discovery that would have anticipated that which a quarter century later made the name of Sir William Herschel world-renowned.” In 1756, the planet Uranus passed very close to this star but it moved so slowly that it escaped his notice.

………………………………………………………………………………………………………………………………..

Author’s note: The story of Uranus is really the story of ‘near misses.’ The historical archives reveal many such ‘nearly never made it’ sightings of the 7th planet orbiting the Sun. In fact, Galileo himself almost certainly sighted Uranus in the early 17th century, but did not realise its significance.

………………………………………………………………………………………………………………………………..

Above Aquarius you will find the the constellation of Pegasus. It is conspicuously marked by four stars of about the second magnitude, which shine at the corners of a large square, called the Great Square of Pegasus. This figure is some fiften degrees square, and at once attracts the eye, there being few stars visisble within the quadrilateral, and no large ones in the immediate neighborhood to distract attention from it

pp 69

……………………………………………………………………………………………………………………………..

Author’s note: The Great Square of Pegasus is all the more remarkable for its great paucity of bright stars. Indeed, this is precisely the reason why it stands out so prominently in autumn skies. How many stars can you make out within the body of the square? From my reasonably dark site I can make out about, this author can make out maybe a half dozen stars ranging in magnitide from +4 to +5.5, most prominent of which are Upsilon, Tau, Psi and Phi, which vary in glory from +4.4 to +5.1. Additionally, when the constellation is higher up in the sky, and with good transparency and no Moon, additional members can be made out with some concentration; 71 Pegasi ( magniude +5.4)  can be glimpsed near the centre of the square and 75 Pegasi (+5.5)  just a few degrees further south. 85 Pegasi might also be glimpsed just above Algenib (Gamma Andromedae) near the border with Pisces.  Many more are possible from the darkest skies, however. Indeed, counting the number of stars within the Great Square that are visible to the naked eye remains a good test of how dark and transparent your skies are. However, even a thin veneer of haze will all but extinguish the fainter stars visible to the naked eye on the best nights.

……………………………………………………………………………………………………………………………….

Although Pegasus presents a striking appearance to the unassisted eye on account of its great square, it contains little to attract the observer with an opera-glass. It will prove interesting to sweep with the glass carefully over the space within the square , which is comparitively barren to the naked eye but in which many small stars  will be revealed, of whose exstence the naked-eye observer would be unaware. The star marked Pi is an interesting double, which can be separated by a good eye without artificial aid, and which, with an opera-glass, presents a fine appearance.

pp 70

Sweeping with the opera-glass within the confines of the Great Square is still a worthwhile endeavour, where many fainter stars of magnitude 7 and 8 come into view. Though Serviss does mention it, the opera-glass is just the perfect optical accoutrement to properly discern the colour differences between the stars marking the vertices of the Great Square. To this author’s eye, only first magnitude stars clearly reveal their colours, but with the opera-glass you’ll be able to make out that Markab (Alpha Pegasi) and Algenib (Gamma) are lovely blue-white in hue, whilst Scheat (Beta) has, in comparison, a soft ruddy colour. Another beautiful target is Enif (Epsilon), located in the south-western edge of the Flying Horse, near the border with the diminutive constellations of Delphinus and  Equuleus. Owing to its rather irregular variability, it can sometimes manifest as the brightest star in Pegasus, outshining all the others in glory, with its fetching orange complexion. Though a little beyond the low powers offered by the opera-glass, a larger field glass should also reveal Enif’s wide and faint (magnitude 8.6) companion.

It is somewhat surprising that Serviss fails to mention M 15, a bright, sixth magnitude globular cluster just off to the northwest of Enif. Appearing as a fuzzy star in the opera-glass, averted vision should allow you to see it swell to nearly twice the size it appears using direct vision.

Finally, another target worth seeking out is the fifth magnitude star, 51 Pegasi, a sun-like (G class) star located roughly midway between Alpha and Beta Pegasi. Situated just 50 light years from the solar system, 51 Pegasi was shown to have a planet about half the mass of Jupiter circling its parent star just a few million miles from its fiery surface. Fascinated as he was in the ‘plurality of worlds,’ were he alive today, Serviss would most certainly have waxed lyrical about this star system!

Serviss moves from Pegasus into Cetus, the Celestial Whale, and almost immediately launches into an interesting discussion on its most famous luminary; Mira (Omicron Ceti):

By far the most interesting object in Cetus is the star Mira. This is a famous variable- a sun that sometimes shines a thousand-fold more brilliantly than at others! It changes from the second magnitude to the ninth or tenth, its period from maximum to minimum being about eleven months. During about five months of that time it is completely invisible to the naked eye; then it begins to appear again, slowly increasing in brightness for some three months, until it sjines as a star of the second magnitude, being then as bright as, if not brighter than, the most brilliant stars in the constellation. It retains this brilliance for about two weeks, and then begins to fade again, and, within three months, once more disappears.

pp 71-72

………………………………………………………………………………………………………………………………..

Author’s note: Mira is a wonderful subject for the opera glass. It was discovered to be variable by the Dutch astronomer, David Fabricius in 1596, barely a decade before the telescope first made its mark on European civilization. At its brightest, it is a handsome ruddy colour in the opera glass and, thanks to a number of suitable ‘reference stars’ of fixed brightness in its vicinity, which vary in glory from the 6th to the 8th magnitudes, they can be used to monitor its changing luminosity over the weeks and months.It’s period is 332 days.

……………………………………………………………………………………………………………………………..

Serviss explains that Mira is somewhat irregular in its maximum brightness though. For example, he informs us that in 1779 it shone with a brilliance more reminiscent of a first magnitude star. Acknowledging the Sun’s minor variability, Serviss supposes that the nature of its variability is attributed to much more prominent star spots (analogous to the sunpots on our own star) on its fiery surface:

Knowing that our Sun is a variable star-though variable only to a slight degree, its variability being due to the spots that appear upon its surface in a period of about eleven years- we possess some light that may be cast upon the mystery of Mira’s variations. It seems not improbable that, in the case of Mira, the surface of the star at the maximum of spottedness is covered to an enormously greater extent than occurs during our own sun-spot maxima, so that the light of the star, instead of being merelty dimmed to an almost imperceptibe extent , as with our sun, is almost blotted out.

pp 72

………………………………………………………………………………………………………………………………..

 

Author’s note: Serviss was wrong in his explanation of Mira’s extraordinary variability. Its variability is actually caused by its sinusoidal expansion and contraction, from 400 to 500 times the diameter of our own Sun. It is this change in radius and temperature that gives rise to its variability. Mira is at the latest stage of its evolutionary journey and, as a result, is shedding its outer atmosphere to interstellar space.

……………………………………………………………………………………………………………………………….

Serviss wonders whether the antics of Mira might reflect the fate of our own star in the aeons to come:

We might even go so far as to say that possibly Mira presents to us an example of what our sun will be in the course of time, as the dead an barren moon shows us, as in a magician’s glass, the approaching fate of the earth. Fortunately, human life is a mere span in comparison with the aeons of cosmic existence, and so we need have no fear that either we or our descendants  for thousands of generations shall have to play the tragic role of Cambell’s ” Last Man,” an endeavor to keep up a stout heart amid the crash of time by meanly boasting to the perishing sun, whose rays have nurtured us, that, though his proud race has ended, we have confident anticipations of immortality. I trust that when man makes his exit from this terrestrial stage, it will not be in the contemptible act of kicking a fallen benefactor.

pp 73

………………………………………………………………………………………………………………………………

Author’s note: Like human beings, stars are at their most unstable when very young and very old. In middle age, they enjoy much greater stability. Our Sun, now in its stable mid-life, is the least variable star known to astronomical science. Greater variability would be very dangerous for the life that teems on this planet. Is it a coincidence that humankind arose on the scene during this period of maximum solar stability? I think not. This is the best possible time to launch a global civilisation, where billions of human beings can enjoy the benefits of great scientific advances that make our lives comfortable. It was planned that way and can only last for a definite amount of time before things go downhill for one and all. The Biblical authors affirm that the Earth is not our ultimate home;

For here we do not have a lasting city, but we are seeking the city that is to come.

Hebrews 13:14

…………………………………………………………………………………………………………………………….

The text on autumn skies moves from Cetus into Pisces, a large and sprawling constellation snaking its way from ‘under’ the square of Pegasus (as seen from the northern hemisphere), northeastwards where it borders with Andromeda, the Chained Princess. Beginning with some mythology associated with the constellation, Serviss then suggests we sweep our opera glasses from northeast to southwest and examine the many delightful stars that fall into the field of view:

You will find it very interesting to take your glass and , beginning with the attractive little group in the Northern Fish, follow the windings of the ribbon, with its wealth of tiny stars, to the Western Fish. When you have arrived at that point, sweep well over the sky in that neighborhood, and particularly around and under the stars Iota, Theta, Lambda and Kappa. If you are using a powerful glass, you will be surprised and delighted by what you see.

pp 74

……………………………………………………………………………………………………………………………….

Author’s note: The most distinctive feature of this constellaton is the attractive loop of seven stars situated at its southwestern edge known as the Circlet. The field of view offered up by the opera glass used by this author is not large enough to encompass them all, but a modern, wide-angle binocular can certainly do so. Centre Kappa and Lambda Piscium in the field. Just a short distance south of these stars lies the spot where the Sun crosses the celestial equator, heralding the arrival of Spring in the northern hemisphere. While you’re there, it’s worth checking out a pretty little asterism known as Alessi J23407+0757 situated just over two degrees north of Iota Piscium. Appearing quite smudgy in the opera glass owing to its small image scale, it makes a delightful telescopic sight consisting of about half a dozen stars.

………………………………………………………………………………………………………………………………..

Serviss leaves Pisces and then moves into Aries, the Ram, sandwiched between Taurus and Andromeda, where he invites us to explore its two brightest luminaries, set about four degrees apart; Alpha Arietis(Hamal) and Beta Arietis (Sheratan), both of the second magnitude. They present an interesting case of colour contrast, with Hamal shining with a soft orange hue while Sheratan is revealed as blue-white in the opera glass. On page 75, Serviss gives mention to Gamma Arietis(Mesarthim). He writes:

Gamma Arietis, is interesting as it was the first telescopic double star ever discovered. Its duplicity was detected by Dr. Hooke while watching the passage of a comet near the star in 1664.

pp 75

……………………………………………………………………………………………………………………………….

Author’s note: The opera glass will pick up a faint star ( 7 Arietis) just west of Mesarthim, but this is not the duplicity Serviss speaks of. In a small telescope using low power, magnitude 3.9 Mesarthim is seen to be composed of two stars, both white and of nearly equal magnitude; 4.6 and 4.7.

…………………………………………………………………………………………………………………………….

At the bottom of page 75, Serviss returns to one of the themes he raises earlier in the chapter, by finally introducing the constellations that comprise the ‘Royal Family,’ consisting of Perseus, Andromeda and Cassiopeia, all featured on Map 17 on page 77 of the text. After discussing their interesting mythology, he finally begins the astronomical discussion of these constellations on page 79, where he notes the great riches to be found within their confines;

The starry riches of these constellations are well matched with their high mythological repute. Lying in and near the Milky-Way, they are particularly interesting to the observer with an opera glass. Besides, they include several of the most celebrated wonders of the firmament.

pp 79

Serviss begins with Andromeda and its greatest attraction to the possessor of an opera glass; the Great Nebula (M 31):

In searching for picturesque objects in Andromeda, begin with Alpheratz and the groups forming the hands. Below the girdle will be seen a rather remarkable arrangement of small stars in the mounth of the Northern Fish. Now follow up the line of the girdle to the star Nu. If your glass has a pretty wide field, your eye will immediately catch the glimmer of the Great Nebula in Andromeda in the same field with the star.

 pp 79-80

………………………………………………………………………………………………………………………………

Author’s note: The “Great Nebula” in Andromeda is indeed a fine sight in the author’s opera glass, where its central bulge and extended spiral arms look rather like two fried eggs set back to back.

………………………………………………………………………………………………………………………………

He continues on page 80 to inform us that this deep sky object  is the “oldest or earliest discovered of the nebulae, and with the exception of that in Orion, is the grandest visible in this hemisphere.”

An illustration of what the Andromeda Nebula looks like in an opera glass is provided on page 80, together with an early reference to averted vision:

By turning the eyes aside, the nebula can be seen, extended as a faint, whispy light, much elongated on either side of the brighter nucleus.

pp 80

………………………………………………………………………………………………………………………………..

Author’s note:  We have a tendency today to think that many of the more advanced skills employed by visual observers are essentially modern developments. And yet Serviss clearly reveals to us that the eminently useful activity of using averted vision (using the night-sensitive rod cells situated either side of the fovea)  was known and used to good effect at the end of the 19th century.

………………………………………………………………………………………………………………………………..

On page 80 through 81, Serviss described the curious phenomenon of a nova seen superimposed on the Andromeda Nebula in 1885, which flared up suddenly and faded back to invisibility in the course of just a few months. He does not however, reveal the interesting story of its discovery.

……………………………………………………………………………………………………………………………

Author’s note: What Serviss is almost certainly referring to is SN 1885, which was first chanced upon by the French  astronomer; Ludovic Gully, on the evening of August 17 1885 from Rouen, France, during a public stargazing event. Intriguingly, Gully dismissed the event as an artifact of ineffective baffling of his telescope from scattered moonlight and so did not follow it up and report it to the broader astronomical community. Just two evenings later, it was apparently seen by the Irish amateur astronomer, Isaac Ward(1834-1916), based in Belfast, who described its appearance as ruddy and with an estimated magntude brightness of + 7.

The Northern Irish astronomer, Isaac Ward (1834-1916), seen here sat beside the 11cm achromatic refractor he allegedly used to observe SN 1885A. Image credit: Wiki Commons.

 

SN 1885A was picked up by Ernst Hartwig, based at Dorpat (Tartu) Observatory, Estonia, on the evening of August 20 1885, when its existence was finally communicated to the international community. Despite attempts by both Gully and Ward to claim it as their own, the discovery of ‘S Andromedae’  (the common name soon bestowed upon it), was credited to Hartwig. SN 1885A was a supernova, which reached its maximum brightness of +5.85 on August 21 1885 after which it faded back to magnitude 14 a year later. More historical information regarding the object can be viewed here. SN 1885A retains the distinction of being the only supernova event to have been viewed in the Andromeda Galaxy to this day.

………………………………………………………………………………………………………………………………..

That Serviss was largely ignorant of the true nature of SN 1885A  is no surprise. Astronomers knew very little in these early days considering how massive stars end their lives. What is more, we also gain a glimpse of how small the cosmos was thought to be at the end of the 19th century. Concerning the ‘nova’ in Andromeda he writes;

Although it appeared to be beside the bright nucleus of the nebula, it is likely that it was really hundreds or thousands of millions of miles either this side or the other side of it.

pp 80-81.

On page 81, Serviss encourages users of the opera glass to conduct sweeps through Andromeda eastwards towards Cassiopeia and Perseus. As we do so, the richness of star fields increases dramatically as our portal on the heavens rejoins the meandering river of stars that is the Miky Way. On page 82, Serviss pauses to consider Gamma Andromedae, which presents in  a comely golden hue in the opera glass. He also points out that this is the spot in the sky that demarks the radiant of the Biela (Andromedid) meteor shower, so called after the astronomer who first discovered a short period comet that graced the inner solar during the mid 19th century.

………………………………………………………………………………………………………………………………

Author’s note: Serviss was also a keen telescopist and indeed published a splendid book (mentioned earlier in passing) dedicated to the sights within reach of a small telescope. What’s more, this author imagines him using both the opera glass and the telescope profitably to bring the many treasures of the northern sky within reach of his eyes. Serviss alerts us to the beautiful colour contrast triple system, Gamma Andromedae (pp 82), which is a delightful sight in a telescope employing moderate powers. Before leaving Andromeda, be sure to check out the terrific binocular triple, Nu Andromedae. Observers with the keenest eyesight should try their hand at seeing this triple system with the naked eye.

……………………………………………………………………………………………………………………………….

Next let us turn to Perseus. The bending row of stars marking the center of this constellation  is very striking and brilliant. The brightest star in the constellation is Alpha, or Algenib, in the center of the row. The head of Perseus is toward Cassiopeia, and in his left hand he grasps the head of Medusa, which hangs down in such a way that its principal star, or Algol, forms a right angle with Algenib and Almach in Andromeda.

pp 83.

Perseus, the classical Hero, presents some of the most spectacular sights to the user of an opera glass. The opulent splashing of stars around Alpha Persei (Algenib) is presented in the star map on page 84 of the text and cries out for exploration. After discussing the Demon Star, Algol, Serviss turns his attention to the region of sky around Algenib:

Turn now to the bright star Algenib, or Alpha Persei. You will find with the glass an exceedingly attractive spectacle there. In my note-book I find this entry, made while sweeping over Perseus for materials for this chapter: “The field about Alpha is one of the finest in the sky for an opera glass. Stars conspicuously ranged in curving lines and streams. A host follows Alpha from the east and south.” The picture on page 84 will give the reader some notion of the exceeding beauty of this field of stars, and of the singular manner in which they are grouped, as it were, behind their leader. A field glass increases the beauty of the scene.

pp 85-6.

…………………………………………………………………………………………………………………………..

Author’s note: The reader will note that Serviss refers to Alpha Persei as ‘Algenib’ rather than the more familiar name of ‘Mirfak’ used by astronomers today.

Serviss took notes while observing; an essential activity for any serious observer!

In October, Perseus rides very high in the sky at the author’s location, making it especially well placed for observation. The stream of stars around Mirfak referred to by Servis is known today as the Alpha Persei moving cluster (or association). Centring the opera glass on Mirfak reveals about a dozen stars of magnitue 6 or greater within a two degree radius anda few more ‘outliers’ can be picked up by virtue of the glass’ larger field of view (~4.5 degrees). This remarkable clustering of star light presents one of the most spectacular sights in all the northern heavens using a field glass. Indeed, so large and sprawling is this cluster that it is somewhat lost in the field of view offered up by even the smallest rich field ‘scope!

Modern binoculars have come an awful long way since Serviss penned his words. Today, one can obtain very decent binoculars for a modest price offering much higher contrast, magnification and field of view than anything Serviss could have dreamed of! The author’s 8 x 42 binocular, for example, samples a field fully 7.3 degrees wide, and with a higher magnification can pull out considerably fainter members than any early 20th century field glass. This instrument makes observing through the old field glass more like looking through a straw than anything else!

Isn’t modern technology wonderful!

This author considers it a great blessing that he is able to use such a wonderful optical instrument from the 21st century!

Intelligent development: a modern binocular (right) exceeds the power of old opera glasses by a huge margin.

 

Observing the Alpha Persei Association with a modern binocular cannot fail to introduce a deep sense of awe concerning the vast beauty of the heavens!

………………………………………………………………………………………………………………………………..

The reader will find a starry cluster marked on Map 17 as the “Great Cluster.” This object can be easily detected by the naked eye, resembling a whisp of luminous cloud. It marks the hand in which Perseus clasps his diamond sword, and, with the aid of a telescope of medium power, it is one of the most marvelously beautiful objects in the sky- a double swarm of stars, bright enough to be clearly distinguished from one another, and yet so numerous as to dazzle the eye with their lively beams.

pp 86

Serviss is referring to the famous Double Cluster (Caldwell 14) located about mid-way between Perseus and Cassiopeia. This is undoubtedly one of the crown jewels in all the heavens, and while it can be seen as a foggy whisp with the naked eye, any optical aid makes it look immesaurably better. Serviss writes;

An opera glass does not possess sufficient power ” to resolve” this cluster, but it gives a startling suggestion of its half-hidden magnificence….”

pp 86

……………………………………………………………………………………………………………………………

Author’s note: The view of the Double Cluster is considerably improved with an opera glass, but it is much better seen with decent aperture telescopes. This author observes it pretty much routinely for much of the year and finds that the view becomes better and better the larger the telescope is employed. There will be a natural limit though, as the largest telescopes will have a field of view that becomes too small to sample the full glory of this celebrated deep sky object. The best view he has had in recent years is through a 12″ f/5 Newtonian reflector using a 34mm  wide angle eyepiece serving up a power of 45x in a 1.5 degree true field, but a very close second is at 59x in the same telescope in a one degree field.The latter is slightly less favoured, as it restricts some of the hinterland to these clusters from being comfortably observed.

……………………………………………………………………………………………………………………………….

Nearby, about mid-way between Algol and the lovely golden Gamma Andromedae (Almach), the opera glass makes light work of picking up the open cluster also mentioned by Serviss as’ 34 M’. When high in the sky, during October and November, one can make out perhaps a half dozen of its brightest stellar members and perhaps twice that with a 10 x 50 binocular. Telescopically, M 34 is reasonably rewarding, presenting a rich scattering of white, yellow and orange stars at moderate medium powers.

Serviss next invites us to explore the rich stellar archipelagos of Cassiopeia, easily made out as ‘wonky W’, as this author affectionately refers to it. Serviss writes:

Here the Milky-Way is so rich that the observer hardly needs any guidance, he is sure to stumble upon interesting sights for himself. The brightest stars are generally represented as indicating the outlines of the chair or throne in which the queen sits, the star Zeta being in her head. Look at Zeta with a good, field glass, and you will see a singular and brilliant array of stars near it in a broken half circle, which may suggest the notion of a crown.

pp 86-87.

From here, Serviss invites the reader to visit a locus very near the star Kappa Cassiopeiae, denoted by a very small circle on Map 17 ( page 76). A number is assigned to this locus:- 1572. Intriguinginly, this little spot makes Serviss’ mind races:

This shows the spot where the famous temporary star, which has of late been frequently referred to as the “Star Of Bethlehem,” appeared. It was seen in 1572 , and carefully observed by the famous astronomer Tycho Brahe. It seems to have suddenly burst forth with a brilliance that outshone every other star in the heavens, not excepting Sirius itself. But its supremacy was short-lived. In a few months it had sunk to the second magnitude. It continued to grow fainter, exhibiting some remarkable changes of color in the meantime, and in less than a year and half it disappeared.

pp 87.

Serviss goes on to say that in 1264 and 945 AD, similar outbursts of brightness were recorded at the same location in the heavens. Serviss seems to suggests that a legend grew up around this ‘nova’  and that it could also be the location of a star that burst forth during the time of the birth of Christ. Yet, Serviss exercises caution when entertaining such legends;

In short, there are two many suppositions and assumptions involved to allow any credence being given to the theory of the periodicity of Tycho’s wonderful star. At the same time, nobody can say it is impossible that the star should appear again, and so it may be interesting to the reader to know where to look for it.

pp 87-88.

………………………………………………………………………………………………………………………………

Author’s note: Serviss is justified in expressing caution in attributing the Star of Bethlehem to Tycho’s Star. As a Bible believing Christian, the ‘Star’ was undoubtedly a real phenomenon, as were Christ’s teachings, miracles, death and resurrection. Best to leave it at that! No harm done in visiting this spot in Cepheus from time to time!

………………………………………………………………………………………………………………………………..

On page 88, Serviss brings his tour of the autumn sky to an end by briefly considering a couple of stars in Cepheus; particularly Herschel’s Garnet Star, Mu Cephei, the deep sanguine hues of which will delight the user of an opera glass, as well as the wonderful Delta Cephei, a celebrated double and variable star, the components of which are quite widely spaced. Serviss writes:

With a good eye, a steady hand and a clear glass, magnifying not less than six diameters, you can separate them, and catch the contrasted tints of their light.

pp 88

……………………………………………………………………………………………………………………………….

Author’s note: The separation of Delta Cephei A & B has hardly changed since Serviss penned his words. Today they are separated by 41,” precisely the number proffered by Serviss at the end of the 19th century (see page 88). Try as he may, this author has not been able to prize the components apart using his low power opera glass. Even his steadily-held 8 x 42 failed the test. He has however found it no trouble to separate the components using a power of about 15x in a 80mm shorttube achromatic telescope on a steady night with good transparency. But one can easily monitor the changing brightness of the Cepheid variable (Delta Cephei A) with an opera glass, which gradually fades from magnitude 3.5 back to 4.4 over a period of about five days and 9 hours.

……………………………………………………………………………………………………………………………….

Chapter IV  The Stars of Winter

Covering pages 89 through 117.

I have never beheld the first indications of the rising of Orion without a peculiar feeling of awakened expectation, like that of one who sees the curtain rise upon a drama of absorbing interest. And certainly the magnificent company of the winter constellations, of which Orion is the chief, make their entrance upon the scene in a manner that may be described as almsot dramatic. First in the east come the world-renowned Pleiades. About the same time Capella, one of the most beautiful of stars, is seen flashing above the north-eastern horizon. These are the sparkiling ushers to the coming spectacle. In an hour the fiery gleam of Aldebaran appears at the edge of the dome below the Pleiades, a star noticeable among a thousand for its color alone, besides being one of the brightest of the heavenly host. The observer familiar with the constellations knows, when he sees this red star which marks the eye of the angry bull, Taurus, that just behind the horizon stands Orion with starry shield and upraised club to meet the charge of his gigantic enemy. With Aldebaran rises the beautiful V-shaped group of the Hyades.

pp 89

Despite being separated by over a century of time, Serviss’ opening lines in this chapter covering the winter sky, immediately resonate with this author, as though he were standing right beside him on a clear and dark winter evening. Orion is indeed the great herald of the hyemal heavens, its august form dominating the meridian from well after midnight in early December but arriving increasingly earlier as the winter progresses.

As well as hosting a riot of bright stars crying out for observation with an opera glass, Orion’s brilliant luminaries – Rigel and Betelgeuse – are accompanied by a host of brilliant suns that decorate the heavens: Sirius and Procyon dominate the sky low in the southeast, and higher up, fiery red Aldebaran in Taurus, and creamy yellow Capella, the jewel of Auriga. The heavenly twins, Castor & Pollux boldly announce the arrival of Gemini, and over in the west at sunset, the white and blue-white luminaries of summer still make their presence felt; Altair in Aqulia, Deneb in Cygnus and Vega corruscating wildly in the denser air at lower altitude.

This rich assortment of bright stars create the unmistakable impression that the winter sky is darker than at other times of the year. And, indeed, there is more than a grain of truth to this assertion; for it is at this time of year that our gaze begins to carry us away from the extremely bright centre of our galaxy, and faces the Perseus spiral arm of our Milky Way.

Of such an array of bright winter stars, Serviss believes it is unrivalled in all the heavens;

The heavens contain no other naked-eye view comparable with this great array, not even the glorious celestial region where the Southern Cross shines supreme, being equal to it in splendor.

pp 91.

 

From his observing site in the populous borough of Brooklyn, Serviss provides a historically interesting titbit regarding the encroach of light pollution in urban settings:

To comprehend the real glories of the celestial sphere in the depth of winter, one should spend a few clear nights in the rural districts of New York and new England.

pp 91

……………………………………………………………………………………………………………………

Author’s note: Clearly, by the 1890s, light pollution was becoming a signifiant issue for urban dwellers in comparison to the darker skies of earlier times.

……………………………………………………………………………………………………………………..

The reader is referred to maps 18 and 19  feaured on pages 92 and 93 of the text. Serviss begins with the large and winding constellation Eridanus the celestial River, so named by the ancient Greeks, though the Egyptians intended that it should really represent the majestic Nile. Only the northernmost stars are visible from the author’s far northerly latitude, where the opera glass sweeps up a good assortment of its stars including Beta, which forms part of the ‘foot’ or Orion near Rigel, but also the roughly linear array of stars comprising Gamma, Pi, Epsilon and Delta Eridani.

Fluvius (Latin for ‘river’) Eridanus, as it is affectionately known to this author, snakes its way over a prodigious 100 degrees of sky, as far south as the bright blue-white star, Achernar, some 57 degrees and 42 minutes south of the celestial equator and so hopeless beyond the ken of observers situated in the far north.

Seviss calls our attention to the remarkable multiple star system, Omicron (40) Eridani:

There are the two Omicrons, the upper one being o1 and the lower one o2. The latter is of an orange hue, and is remarkable for the speed which which it is flying through space. There are only one or two stars whose proper motion, as it is called, is more rapid than that of o2 in Eridanus. It changes its place nearly seven minutes of arc in a century.

pp 94-5

……………………………………………………………………………………………………………………………

Author’s note: The large proper motion of o2 Eridani is a sure sign that it is located relatively near the solar system. Indeed astronomers esimate that is a mere 16 light years away.

………………………………………………………………………………………………………………………………

Though both o1 and o2 Eridani are quite easily seen with the opera glass, the deeper secrets of the orange star o2 are quite beyond its powers. o2 actually has two faint companions of magnitudes 9.5 and 10.5, which were both uncovered by Sir William Herschel, observing from Bath, England, onthe evening of January 31 1783. These can be resolved by a small telescope using moderate magnifications (discussed by Serviss on page 95). the brighter magnitude 9.5 star is actually a white dwarf, discovered to be such in 1910, while the fainter 11th magnitude component is now known to be a red dwarf star that orbits the white dwarf every 250 years or so. What an eclectic communion of suns!

From northern Eridanus, Serviss next turns his attention to two remarkable asterims higher up in the sky in Taurus; the Hyades and the Pleiades. Easily visible to the naked eye, these clusters of starlight are a delight to study with the opera glass as Serviss enthusiastically informs us. Concerning the illustrious Hyades he writes;

Many of these stars can be seen, on a dark night, with an ordinary opera glass, but, to see them well, one should use as large a field glass as he can obtain……Below the tips of the horns and over Orion’s head, there are also rich clusters of stars, as if the Bull were flaunting shreds of sparkling raiment torn from some celestial victim of his fury. With an ordinary glass, however, the observer will not find this star-sprinkled region around the horns of Taurus as brilliant a spectacle as that presented by the Hydaes and the group of stars just above them in the Bull’s ear.

pp 96-7

……………………………………………………………………………………………………………………….

Author’s note:

Map of the main stars of the Hyades asterism in Taurus. The horizontal axis is measured in hours and minutes of right ascension, and the vertical axis is measured in degrees of declination. Image credit: Wiki Commons.

 

This author has enjoyed many evenings observing the Hyades with his opera glass, or with modern binoculars. The rather restricted field (4.5 angular degrees) of view of the former will just accommodate the main part of the Hyades asterism, but it is still enough to soak up the beautiful ruddy tint of brilliant Aldebaran, and will show many of the brighter stars in the southern part of the characteristic ‘V’ shape, where the mind’s eye can indeed conceive of them as ” shreds of sparkling raiment,” as Serviss describes them. Indeed, close inspection with the opera glass reveals subtle colour differences between its constituent stars; orange, yellow and white.

His remarks concerning what can be seen in a larger ‘field glass’ are entirely valid however. For example, in a modern compact binocular, such as the author’s 8 x 42, the view of the Hyades is transformed immeasurably from that seen in the early 20th century opera glass, where many more stars are manifested owing to considerably greater magnification and a much wider field of view. In particular, the southern part of the asterism comes alive with dozens of faint stars like sparks falling from the fiery red coals of Aldebaran. Indeed, the view of the Hyades in a modern binocular offering a 7 or 8 degree true field is arguably one of the most fetching sights in all the heavens and one this author never tires of exploring!

………………………………………………………………………………………………………………………………..

On page 97, Serviss states that the Crab Nebula ( Messier 1) can be seen in a ” first rate field glass,” in the vicinity of Zeta Tauri.

………………………………………………………………………………………………………………………….

Author’s note: Alas, I have been unable to detect M1 from my observing site using the opera glasses. Indeed, it is very challenging in the 8 x 42, but readily seen as a tiny nebulous speck in a 10 x 50 at the same site. The author did however detect the Crab from a darker setting in the southwest of Scotland using his 8 x 42 during a family vacation in October 2018. The fact that it is a difficult binocular object today probably reflects the darker conditions enjoyed by Serviss at the end of the 19th century.

………………………………………………………………………………………………………………………………

On page 98, Serviss calls our attention to the subtle colour differences between Betelgeuse in Orion and Aldebaran in Taurus;

The redness of the light of Aldebaran is a very interesting phenomenon. Careful observation detects a decided difference between its color and that of Betelgeuse, or Alpha Orionis, which is also a red star……Aldebaran has a trace of rose-color in its light, while Betelgeuse is of a very deep orange.

pp 98

………………………………………………………………………………………………………………….

Author’s note: This is indeed the case. As stated previously, the opera glass is a capital instrument to discern colours in stars. This author can readily detect a rose tinting in Aldebaran while the hue of Betelgeuse does indeed present as a very deep orange. This probably reflects the spectral differences between the stars (K5 and M1 respectively), which in turn are attributed to different absorption characteristsics of the gaseous matter in their outer atmosphere.

…………………………………………………………………………………………………………………………

The magnificent Pleiads.

On page 100, Serviss launches into a fascinating discussion of the Pleiades with beautiful prose:

In every age and in every country the Pleiades have been watched, admired and wondered at, for they are visible from every inhabited land of the globe. To many, they are popularly known as the Seven Sisters , although few persons can see more than six stars in the group with the unaided eye. It is a singular fact that many of the ancient writers declare that only six Pleiades can be seen, although they will also assert that they are seven in number. these seven were the fabled duaghters of Atlas, or the Atlantides, whose names were, Merope, Alcyone, Celaeno, Electra, Taygeta, Asterope and Maia.

pp 100

The mythology behind the Pleaides is not confined to the imaginings of the ancient Greeks though, for as Servss reminds us, the celestial fireflies feature richly in the lore of every nation under heaven. He writes:

They have impressed their mark, in one way or another, upon the habits, customs, traditions, language, and history of probably every nation. This is true of savage tribes as well as great empires.The Pleiades furnish one of the principal links that appear to connect the beginnings of human history with that wonderful prehistoric past, where, as through a gulf of mist, we seem to percieve faintly the glow of a golden age beyond.

pp 101

………………………………………………………………………………………………………………………………..

Author’s note: The Genesis creation account states that when God first fashioned humans in His image from the dust of the ground, he became a living, breathing soul  endowed with remarkable cognitive abilities(far in excess of any beast which, in itself, still presents an intractable problem for evolutionists). And sure enough, archaeologists have uncovered many cave paintings which affirm mankind’s long fascination with the stars, where the Pleiads are often depicted in highly accurate astronomical renderings. See this article for interest. Clearly these early people were no dummies!

………………………………………………………………………………………………………………………………..

Over the next few pages, Serviss delivers an excellent overview of some of the mytholgical lore associated with the Pleiades, particularly that of the ancient Egyptians but also mentioning the Hindus, Persians, Greeks, various south- and central-American cultures and even the Celtic Druids, which is of passing interest, but ultimately unrelated to observing. It is only on page 102 that he re-engages the interested reader with observational commentary, referring to a neat little diagram of the Pleiads on page 103;

With the most powerful field-glass you may be able to see all the stars represented in our picture of the Pleiades. With an ordinary opera-glass the fainter ones will not be visisble; yet even with such a glass the scene is a remarkable one. Not only all of the “Seven Sisters” but many other stars can be seen twinkling among them.

pp 102

………………………………………………………………………………………………………………………………

Author’s note: The low-power opera glass does indeed show many more stars (perhaps 15?) than can be seen with the unaided eye but is simply not powerful enough to discern the fainter members drawn on his diagram presented on page 103. Nonetheless, the opera glass still presents a beautiful and engaging image of this celebrated star cluster that is substantially eclipsed by modern binoculars with their higher powers and superior light throughput.

………………………………………………………………………………………………………………………………

Serviss encourages his readers to learn the name and position of the main stars in the Pleaides before discussing some of the more interesting astronomical science associated with the asterism, particularly evidence associated with their common origin, which includes a common proper motion through interstellar space (see page 103). He even mentions a rather bizarre assessment made by the German astronomer, Johann von Mädler (1794-1874), who first put forth the idea that all the stars of the Pleiades revolved around Alycone, but which was later shown to be untenable. Immediately following this, Serviss embarks on a fascinating discussion of the existence of nebulosity around some of the stars in the Pleiades star cluster:

Still another curious fact about the Pleiades is the existence of some rather mysterious nebulous masses in the cluster. In 1859 Temple discovered an extensive nebula, of a broad oval form, with the star Merope immersed in one end of it. Subsequent observations showed that this strange phenomenon was variable. Sometimes it could not be seen; at other times it was very plain and large. In Jeaurat’s chart of the Pleiades, made in 1779, a vast nebulous mass is represented near the stars Atlas and Pleione. This has since been identified by Goldschmidt as part of a huge, ill-defined nebula, which he thought he could perceive enveloping the whole group of the Pleiades. many observers however, could never see nebulous masses, and were inclined to doubt their actual existence. Within the past few years astronomical photography, having made astonishing progress, has thrown light upon the mysterious subject. The sensitized plate of the camera, when applied at the focus of a properly constructed telescope, has proved more effective than the human retina, and has, so to speak, enabled us to see beyond the reach of human vision by means of the pictures it makes of objects which escape the eye. In November 1885, Paul and Prosper Henry, turned their great photographic telescope upon the Pleiades, and with it discovered a nebula apparently attached to the star Maia. The most powerful telescopes in the world had never revealed this to the eye.

pp 104-105.

……………………………………………………………………………………………………………………………….

Author’s note: The reflection nebula around Merope was uncovered by Wilhelm Temple using a modest 4 inch achromatic refractor. Historical documents do indeed show that this nebulosity was notoriously difficult  to discern visually, especially with large, observatory-class instrumets. One record shows that the celebrated double star observer, S.W. Burnham, failed to see any nebulosity around Merope using a much larger refractor than anything Temple had access to and so expressed doubt of its existence. It was spotted by E.E Barnard though. Such stories are not unique to the Merope Nebula, as similar anecdotes have been reported concerning the Rosette Nebula in Monoceros, which is much better seen in a small, rich-field telescope than a large one with a restricted field of view.

The author is uncertain as to the precise photographic telescope used by the brothers Henry referenced by Serviss above, but it was probably a fore-runner to their 33cm and larger 62cm astrographs used by astronomers at Paris and Meudon Observatory, respectively, in the 1890s. For more information please see chapter 26 on the Great Meudon Refractor in the author’s book, Chronicling the Golden Age of Astronomy (Springer Nature 2018).

………………………………………………………………………………………………………………………………..

The glory of Orion. Note Betelgeuse(red) at top left and Rigel(white) at bottom right. Image credit: Wiki Commons.

On page 106, Serviss begins to create many charming word pictures of the ruling constellation of winter; Orion. He writes;

To the naked eye, to the opera glass, and to the telescope, Orion is alike a mine of wonders. This great constellation embraces almost every variety of interesting phenomena that the heavens contain. Here we have the grandest of the nebulae, some of the largest and beatifully colored stars, star-streamers, star-clusters, nebulous stars, variable stars.I have already mentioned the positions of the principal stars in the imaginary figure of the great hunter….. Betelgeuse, it may be remarked is slightly variable. Sometimes it appears brighter than Rigel, and sometimes less brilliant. It is interesting to note that, according to Secchi’s division of the stars into types, based upon their spectra, Betelegeuse falls into the third order, which seems to represent a type of suns in which the process of cooling , and the formation of an absorptive evelope or shell, have gone on so far that we may reagrd them as approaching the point of extinction.

pp 109

……………………………………………………………………………………………………………………………

Author’s note: Even at the end of the 19th century, it is clear that astronomers had already envisaged an evolutionary sequence of events that causes stars to change throughout their lives. Secchi’s primitive stellar classification sheme gave way to the more elaborate Hertzsprung-Russell scheme, where a robust physical theory underpinned this change, greatly aided by the genius of Sir Arthur Eddington, who’s seminal work established the physics of stellar interiors and who clearly demsonstrated how they change as a function of time. Betelgeuse is indeed at the end of its life and is fated to explode in a cataclysmic supernova event. It might have already happened, for we would have no knowledge of the event for 500 years, which is the time taken for its light to reach us. Mighty Betelgeuse is a mammaoth star, whose diameter exceeds that of the orbit of Mars.

………………………………………………………………………………………………………………………………

Serviss continues his discussion on the bright luminaries of Orion by contrasting fiery red Betelegeuse with brilliant white Rigel;

In Rigel we see a sun blazing with the fires of youth, splendid in the first glow of its solar energies, and holding the promise of the future yet before it. Rigel belongs to a new generation of the universe; Betelgeuse to the universe that is passing.

pp 110

………………………………………………………………………………………………………………………………

Author’s note: In Serviss’ day, astronomers believed stars started out their lives shining in white or blue-white hues, but as they aged they cooled off into yellow and finally red suns. This is the reason why some old-school astronomers still refer to the whiter stellar varieties as ‘early’ and their ruddier counterparts to be ‘late.’  In reality though, stars vary greatly in their longevity. Small stars, like the exceeding abundant red dwarves, which comprise perhaps 80 per cent of all suns in the Creation, can maintain a stable existence for trillions of years. The largest, in contrast, are fated to self destruct in just millions.

The lifetime of a star is dictated by its mass and scales as (Mo/M)^2.5, where M is the mass of the star and Mo is the mass of the Sun. It follows that while Betelgeuse, with an estimated mass of ~ 12Mo will have a lifetime of (1/12)^2.5 or just 0.2 per cent of the Sun’s lifetime (~10 Gyr). This fits well with its estimated age of ~ 10Myr.

………………………………………………………………………………………………………………………………..

Turn your glass upon the three stars forming the Belt. You will not be likely to undertake to count all the twinkling lights that you will see, especially as many of them appear and disappear as you can turn your attention to different parts of the field.

pp 110

……………………………………………………………………………………………………………………………….

Author’s note: The ~4.5 degree field of view of the opera glass easily fits the three belt stars in the same portal and is a joy to behold on a dark, winter night. The glass reveals that all three stars appear white, reflecting perhaps their common origin from a larger, so-called OB Association. From left to right these stars are given majestic names; Alnitak, Alnilam and Mintaka. Arranged as a slanting line, they naturally create the illusion of being at the same distance but this is, once again, a pleasant fiction; Mintaka is both fainter and nearer than the other two belt stars, which are situated about three times further away.

The belt stars actually form part a much grander arrangement of suns known collectively as Collinder 70. Held steadily, the opera glass will reveal a swarm of fainter stars, many of which are of the 6th and 7th degree of glory, in and around the three belt stars. When observed with a modern 10 x 50 binocular, Collinder 70 is a breathtaking sight! The reader is best advised to wait until the constellation culminates over the southern horizon to make the most at teasing the fainter members of Collinder 70 out of the murk, as they are more easily picked off with increasing altitude.

……………………………………………………………………………………………………………………………

Serviss continues his  description of the winter sky with an in-depth look at Sirius, the brightest star in all the heavens:

Sirius, in fact, stands in a class by itself as the brightest star in the sky. Its light is white, with a shade of green, which requires close watching to be detected. When it is near the horizon, or when the atmopshere is very unsteady , Sirius flashes primatic colors like a great diamond. The question has been much discussed , as to whether Sirius was formerly a red starIt is described as red by several ancient authors, but it seems to be pretty well established that these descriptions are most of them due to a blunder made by Cicero in his translation of the astronomical poem of Aratus. It is not impossible, though it is highly improbable, that Sirius has chnaged color.

pp 111

 

Sirius does indeed corruscate wildly in the dense air near the horizon at my far northerly latitude. The colours of Sirius seen by the naked eye and through the opera glass reveal the complex interplay between brilliant star light and atmospheric refraction. The very idea that Sirius was once a red star seems altogether unlikely to me and Serviss’ pointing to Cicero’s “blunder”, as it were, seems entirely reasonable as the explanation as to why this myth has been perpetuated throughout the centuries.

Serviss invites the reader to look at Sirius with the opera glass and its interesting hinterland. Indeed, by placing Sirius toward the top of the field, my opera glass picks up the faint glow of Messier 41 – discussed by Serviss on page 112 – at the bottom of the field of view. Serviss states that this open cluster is best seen with ” powerful opera glasses or a field glass.”

………………………………………………………………………………………………………………………….

Author’s note: Although many observers more conveniently located further south rightly describe M41 to be a rather spectacular sight in larger binoculars or a small, rich field telescope, it’s very low altitude at 56 degrees north latitude detracts significantly from its visual punch.

……………………………………………………………………………………………………………………………..

Serviss then discusses the discovery of the elusive companion to Sirius, how it was predicted by Friedrich W. Bessel before finally being unveiled in the winter of 1862 when it was discovered through a large achromatic refractor fashioned by Alvan Clark.  In the closing pages of his treatise on the “Winter Stars,” Serviss discusses some low lying objects that can be reasonably seen with a field glass from mid-northern latitudes eg. M46 in Puppis, but for some reason, fails to bring our attention to Messier 50, easily picked up in my lowly opera glass as a foggy 8th magnitude patch about half the size of the full Moon, about one third of the way from Sirius towards Procyon, but does rightly acknowledge an interesting field of stars (8, 13 and 17 Monocerotis), near its northern border. He ends the chapter with a clarion call for us to become observers of the sky:

Do not be afraid to become a stargazer. The human mind can find no higher exercise. He who studies the stars will discover-

“And endless fountain of immortal drink

Pouring unto us from heaven’s brink.”

pp 117.

That’s regal advice for anyone in any time!

………………………………………………………………………………………………………………………………..

Chapter 1: The Stars of Spring

Covering pages 7 through 29

Having selected your glass, the next thing is to find the stars. Of course, one could sweep over the heavens at random on a starry night and see many interesting things, but he would soon tire of such aimless occupation. The observer must know what he is looking at in order to derive any real pleasure or satisfaction from the sight.

pp 7

Serviss begins his overview of the spring sky with a rather bold assertion; haphazard scanning of the heavens with an opera glass is something observers will soon tire of. I respectfully disagree with Serviss in this matter, as I rather enjoy sweeping up starfields, moving randomly one way, and then another, ‘discovering’ new and interesting configurations of stars, unnoticed asterisms as it were, that I may happen to chance upon. What is more, I have come to view all of my binoculars as providing different sized portals on the night sky, with each one opening a unique window on the darkness of space.

When it comes to stargazing, getting lost can be an exciting prospect!

The next few pages of the book cover the basics of how the sky works in beautiful prose, as well as how to get started by learning some of the key signposts that point the way to interesting parts of the spring sky. Serviss urges his readers to take the time to learn how to recognise the main constellations of the vernal heavens:

In the same way you will be able to find the constellations Cassiopeia, Cepheus, Draco, and Perseus. Don’t expect to accomplish all in an hour. You may have to devote two or three evenings to such observation, and make many trips indoors to consult the map (see page 8), before you have mastered the subject; but when you have done it you will feel amply repaid for your exertions, and you will have made yourself silent friends in the heavens that will beam kindly upon you, like old neighbors, on whatever side of the world you may wander.

pp 10

On page 11, Serviss offers some good advice regarding the attainment of a steady, comfortable view, recommending for example, a convenient arm rest and a “lazy back chair.” He then mentions something quite notable:

Remember that no two persons’ eyes are alike, and that even the eyes of the same observer occasionally require a change. In looking for a difficult object, I have sometimes suddenly brought the sought-for phenomenon into view by a slight turn of the focusing screw.

pp 11

………………………………………………………………………………………………………………………………..

Author’s note: I can certainly affirm what Serviss is saying here. The eye can vary somewhat in its degree of accommodation of an image and it has become his custom to keep his hand on the focusing wheel while viewing an object, tweaking it ever so slightly to get the optimal focus.Small chnages can indeed yield dividends, especially on fainter open clusters and nebulae. Of course, changes in altitude also require routine re-focusing.

………………………………………………………………………………………………………………………………

 

To be continued…….

 

De Fideli.

Sorting the Wheat from the Chaff: Small Touches that Make a Good Binocular Great.

Binoculars under test, clockwise from top left; The Barr & Stroud Savannah 8 x 42, the Barr & Stroud Sierra 10 x 50, the Pentax DCF 9 x 28, the Celestron Nature DX 8x 25 and the Opticron Aspheric LE 8x 25.

Not all binoculars are created equal. Some match the advertisement claims, while others do not. In this blog, I’ll be exploring optical and mechanical features that I like in a hard-working binocular and whether or not the price paid for a binocular matches its performance in the field.

Coatings & Baffles:

Okeydokey. Let’s get started.

The reader will note that all the binoculars (featured above) are meant to be fully multi-coated. Here is what I understand the term to mean:

All glass surfaces have multiple coatings and it is the best kind, resulting in light transmission of 90-95% for bright, sharp and contrast images.

Source here.

 

In the first investigation, I performed a bright light experiment to test for;

1. On-axis ghost images which is a sensitive test of the quality of the anti-reflection coatings applied to the optical components within the binoculars.

2. Off axis flaring which tests how good light baffling works in the instruments.

The light source needs to be small and as bright as possible. For this, I elected to use the torch on my iphone with the setting set to maximum. The ambient light was dimmed by pulling my living room curtains in such a way as to leave a small amount of daylilight to illuminate background objects. As well as looking for on-axis reflections and off-axis flare, I studied how well defined the images were immediately behind(backlit) and around the light source.

Performing a small, bright light test in the comfort of my living room. Note the small amount of daylight left in the room to assist imaging backlit objects around the light source(my iphone torch). Note the tiny reflection from the iphone camera lens itself near the centre of the picture.

All the binoculars can be sharply focused at the close distance chosen for the test(~3 metres) and all the images were performed at the position of sharpest focus.The experiment was performed using both eyes separately to check that the effects noted were in any way dependent upon the eye barrel used.

To quantify the effects I chose a number scheme from 1 through 10, with 1 representing very poor perfomance and 10 being sensibly perfect. It must be noted that no binocular, no matter how well appointed, can achieve a 10 score. Even the very best instruments display some degree of unwanted internal reflection and/or off axis flaring. Thus, to expect none at all is quite an unreasonable proposition.

Results:

Instrument                           On-axis internal reflections               Off-axis flaring

Nature DX                                               2                                                  4

Pentax DCF                                            5                                                  6

Opticron Aspheric LE                             4                                                  5

B&S Sierra                                              8                                                 8

B&S Savannah                                        8                                                 9

 

Discussion:

No significant differences between the left and right barrels were uncovered. The results documented are thus representatve for both eyes.

All the binoculars gave acceptable results with the exception of the Celestron Nature DX. The on-axis internal reflections were very strong and bright, with some reflections taking up quite a bit of the field of view. This made imaging backlit objects very difficult. If this is a fully multi-coated binocular then my name is Mickey Mouse. Off-axis flaring was also the strongest in this unit.

To my suprise, the Opticron proved less effective than I had expected with a few fairly prominent reflections on-axis but noticeably better off-axis performance. It was overall however, in a different league to the performance exhibited by the Celestron unit.

The Pentax also suprised me as I expected it to have the best performance, based solely on its reputation for quality and the not inconsiderable price I paid for the unit. It displayed one bright, unwanted reflection on-axis, but had improved off-axis performance in comparison to the Opticron unit. In addition, the definition of backlit objects was considerably improved in both the Pentax and Opticron units over the Celestron.

To my surprise and delight, both the Barr & Stroud Sierra 10 x 50 and the 8 x 42 Savannah showed much more subdued on-axis reflections than the Opticron and Pentax. Instead of bright spots, both these binoculars gave very much more subdued reflections. They were certainly present but with far lower intensity. Off-axis performance was also very impressive, with the nod going to the Savannah. Backlit definition was also excellent in both these instruments. The reader will also note that larger aperture instruments collect more light and so might be expected to have more on-axis internal reflections and off-axis flaring than the smaller aperture binoculars tested. That this was not found to be the case in both the Barr & Stroud units was quite remarkable!

Conclusions: Buyers should be wary of marketing claims.  The Celestron Nature DX clearly has inferior coatings to the other instruments tested and is certainly not fully multi-coated in the same way as all the other units were. This is in keeping with its low price(the lowest of all the instruments tested) and could be said to be an acceptable tradeoff owing to its very low street value (£59 paid). Still the result is rather worrying, as I would reasonably expect the larger DX models to be manufactured in much the same way, and so they may have undergone the same shortcuts somewhere in their construction. Any owners of larger Nature DX binoculars need to check(don’t go all proud on me!) this out and report to the amateur community.

Considering the price paid for both the Barr & Stroud units was about the same as the Pentax binocular(in fact, the Savannah, which I purchased secondhand cost me significantly less), I feel they both offer excellent protection against internal reflections and are very well baffled. Whoever made these units knew what they were doing and properly executed the technologies available to them.

So you don’t always get what you pay for.

Caveat Emptor!

A general note on on coating tests: If you’re a binocular collector, why not perform your own set of tests on them to see if they show evidence of sub-standard anti-reflection coatings? I would expect older models to fare worse in such tests e.g. vintage binoculars made in the post-war era and the like.

A general note on baffling: It occurred to me that while baffling is an important design feature in a good binocular, it is possible to over do it. A well baffled instrument produces images that are richer in contrast than an instrument with inadequate baffling, all other things being equal. But manufacturers can deliberately over baffle the light path with the aim of maximising the punch of an image, but at the expense of cutting off a little too much light and thereby restricting its effective aperture. This may go some way to explaining why some models in the same price range can display significantly different images, some over-emphasing baffling to generate the maximum contrast but where the images are a tad dimmer, and those that produce brighter images but with less aggressive baffling. Since many birders use their binoculars during daylight hours, an aggressively baffled instrument may be judged as having higher contrast, but during more critical testing during low-light conditions or viewing the night sky, its restricted aperture may become more noticeable.

The effects of recess depth in binocular objective lenses: Small design features can make meaningful differences to the quality of the images garnered by a binocular. In this section, I would like to discuss the importance of having objective lenses recessed from the front of the instrument in order to minimise the effects of stray light entering the optical train during bright, daylight operations.

What I’m effectively talking about here is what a lens shade or hood does. The function of such a device is to reduce lens flare comng from the peripheral field as illustrated below for a camera lens;

Scheme of a lens with lens flare. A lens hood is designed so that it does not block the angle of view of the lens. Lens hoods block the Sun or other light source(s) to prevent glare and lens flare. Image credit: Wiki Commons.

It also doubles up to provide some protection of the object glass during adverse weather conditions, such as occurs in rain, mist and when side winds bring air-borne dust and other materials with them.

For the sake of brevity, I will only illustrate the two extremes in the binoculars discussed here. First take a look at the very deeply recessed lenses on the Barr & Stroud Savannah. It measures 7mm!

Note the very deeply recessed objective lenses in the Barr & Stroud Savannah binocular, measured to be 7mm.

Contrast this to that found in the Celestron Nature DX binocular, which had a measured recess of just 3mm.

The very shallow recess of the Nature DX objective lenses (3mm).

For the record, the others fared as folllows;

Barr & Stroud Sierra: 5mm

Pentax DCF: 4mm

Opticron Aspheric LE: 4mm

It is the opinion of this author that having a reasonably functioning lens shade does improve image contrast in daylight images, especially when viewing under bright, sunlit conditions. I was very glad to see that the Barr & Stroud instruments were, yet again, well appointed in this regard. It’s yet another small touch that will be appreciated by an avid binocular enthusiast.

The importance of good quality eyecups: Good eyecups make for comfortable, immersive binocular viewing. If too flimsily made, they can be uncomfortable to set your eyes against, or fall out of position when twisted up. For me, there is nothing more frustrating than to have to readjust the eye cups on the fly while making observations. Cheaper models invariably come with crudely made plastic cups that quickly lose their rigidity after a few weeks of hard use. Better made eyecups usually come in the form of metal-over rubber and can be set to a variety of positions that hold there, even when a little pressure is applied to them, either by touching them with your fingers or pressing your eye up to them when conducting an observation.

Of the binoculars considered here, three are particularly worthy of a few words; the Pentax DCF, the Barr & Stroud Sierra and Savannah.

The Pentax DCF has good quality eyecups. They provide the user with a choice of four positions and so can accommodate virtually anyone, either without glasses or with them on. They also stay in place when pressure is applied to them. My only gripe is that they they do have a bit of play in them and could be a bit more rigid.

The Pentax DCF has well-made metal-over rubber eyecups that off four positions, from fully retracted to fully extended. Here they are shown in the second position, midway between the maximum and minimum positions that user can choose from.

The Barr & Stroud Sierra and Savannah have significantly different eyecups as the photo below reveals:

The Barr & Stroud Sierra(left) and Savannah(right) have different eyecups, with the latter being smaller and considerably more rigid than the former.

Both use metal-over rubber. Those found on the Sierra model are typical of what you’d find on a mid-priced binocular of this size. The eyecups click nicely into place, offering three positions for optimal eye relief. They are sufficiently well made to last indefinitely if properly cared for. That said, once again, the Savannah really surprised me! Specifically, the eye cups are far more rigid than in the Sierra and click into place with a commanding “kathud” sound. What I found remarkable is that there is very little play to to be had with them. Once clicked into place, they stay in place. You’ll never have to worry about them slipping out of position while using the instrument.

What does this buy you?

Peace of mind!

Now, I’m not saying that the quality of the eyecups on the Savannah is in the same league as those beauties made by Leica and Swarovski( I recently enjoyed the use of the 8.5 x 42 Swarovski ELs), for example, which are works of art, both mechanically and ergonomically, but I doubt anyone would be unimpresed by such high quality eyecups on the Savannah. Indeed, you simply won’t see this kind of quality on any mid-priced binocular that I know of. They are dependable, rigidly set, and a joy to use in the field.

The eyecups on premium model binoculars such as the Swarovski 8.5 x 42 ELs are a mechanical marvel.

The wonderful quality of the twist up eyecups found on the Barr & Stroud Savannah  8 x 42 binocular: they just work well, with zero play and no fuss.

 

Thoughts on Dioptre Adjustment:

A typical position for the dioptre adjuster in many entry-level and mid-priced binoculars. It is usually found under the right eyepiece and is adjusted by twisting it clockwise or anti-clockwise, as appropriate.

Most roof prism binoculars have their dioptre adjustment setting under the right ocular lens. It usually involves twisting a ring either clockwise or anti-clockwise, as appropriate, until both eyes show a perfectly sharp image. This works very well indeed, but some dioptre adjutsment rings are either too stiff or too loose, with the result that tweaking it and maintaining its precise positioning can be problematical. High-end, premium models such as those made by Leica and Swarovski cater especially well for the individual in that one can lock in the correct dioptre position by pushing the focuser forward, dialling in the correct dioptre setting, and then pushing the focusing knob back into place, thereby settin it permanently. This is ideal and a very clever mechanical solution.

The Barr & Stroud Savannah binocular uses a very different strategy however, by placing the dioptre adjustment on a dial just ahead of the focusing wheel as shown below:

The Barr & Stroud 8 x 42 Savannah has its dioptre adjustment setting immediately ahead of the focuser. It adjusts the position of the right barrel optics.

As I explained in a previous blog, I find myself tweaking the dioptre setting fairly frequently and I have elected to do this by using bright stars in the night sky rather than using a terrestrial target. The reason I do so is that I have found that bright daylight targets present an overwhelming amount of visual information to the eye and though you can usually get very close to perfect, I have found small but consistent discrepancies between the position I chose by day and where it is adjusted to at night. Focusing on a bright point source such as a star yields an easy way to remove that ambiguity. I simply look for the tiniest, brightest star images the right barrel can provide.This has become my default custom when using the instrument for star gazing.

But doing this using a dioptre adjusting ring positioned immediately under the right ocular can be a little awkward and sometimes a bit frustrating, especially if the dioptre ring is stiff. In contrast, it is very easy to move my finger forward just a little to adjust the dioptre setting on the Savannah unit, allowing very precise tweaking of the dioptre setting to be made. I think this is a very well thought-out design feature on the Savannah that is not found on many other models.

A Strong Bridge: The design of the bridge mounting the two barrels of the binocular also has an impact on how well it operates in the field. Specifically, if the hinge is too loose, you will have to readjust the IPD every time you use it; not a deal breaker in its own right, but slightly inconvenient. Much better is a binocular that holds its IPD precisely from viewing session to viewing session. The Nature DX is quite stiff, as are the Barr & Stroud instruments, but the Pentax DCF and Opticron units are a bit too loosely mounted in my opinion.

The Savannah binocular in particular, has a very strong bridge, such that I have never needed to readjust it when it is taken out of its case. And when you consider that I’ve literally done this hundreds of times since I acquired in the autumn of 2018, I’d say that’s pretty good going! No faffing about, just remove from case, remove the lens caps and you’re good to go!

The value of a good carry strap: The carrying straps that come with many binoculars( even some mid- to high-end models) are of poor general quality. They’re usually made of poor quality plastic-based materials and fray easily. Having a good quality, padded strap  is a far better option going forward, as the more comfortable the strap, the more you’ll likely use your binocular. In addition, cheap straps cut into your skin more and in hot weather can even cause heat rash and some blistering. One of the first things I’d recommend in upgrading a binocular is to invest in a more durable, high-quality strap.

The straps that come with all of the binoculars I have discussed, with the exception of the Barr & Stroud Savannah, are of generally poor quality and could well do with upgrades. This is something I hope to do remedy over the coming months. The Savannah comes with a nice, padded strap that is very comfortable to use and will not come apart in rough field use. It was a standard accessory with the binocular; complete with the Barr & Stroud logo; a nice touch for sure and something that can only be appreciated by using the instrument for prolonged lengths of time.

A quality carry strap is an important feature if comfort is held as a premium.

Recommending an all-purpose binocular to the masses: We’ve now reached the end of this blog and it’s an appropriate time to reflect on what a quality binocular should behave like. As you can gather, I am very enthusiastic about the Barr & Stroud Savannah in particular, as a full-featured instrument that includes a lot of nice touches but at a price that won’t leave you short of breath(it retails in the region of £120-140 UK). Optically excellent(with a whopping field of view of 143m@1000m or an 8.2 degree field), water proof, and built like a tank (it tips the scales at 810g) with a 10 year warranty, the company has clearly gone well beyond the call of duty to deliver a high quality instrument that will stand the test of time. Indeed, I was so enthusiastic about this particular unit that I ventured onto the vulgar forums to give my vote to it and also to sing a wee tune:

Oh I do like to be beside the seaside

Oh I do like to be beside the sea….

Oh I do like to stroll along the prom prom prom

Where the brass band plays diddleyumpumpum.lol.gif

 

I also suggested there that someone else put this binocular to the test; someone honest and experienced that doesn’t hold grudges against other people.

If that’s YOU,  then you’re in for a pleasant surprise!

 

Neil English was born at an early age and is Professor Emeritus of Tomfoolery from the University of Life.

De Fideli.

Some Comments on Pocket Binoculars.

A representative sample of pocket binoculars; clockwise from the top: the Opticron Aspeheric 8 x 25 LE, the Pentax DCF 9 x 28 and the Celestron Nature DX 8x 25.

Hello again everyone!

Binoculars come in all shapes and sizes, and at prices that suit virtually everyone’s budget. As you may be aware of, I’ve re-ignited my interest in the modern binocular market, having somewhat neglected it for the best part of three decades. But I’ve been making rapid progress and would now like to discuss the market for the smallest binoculars; the so-called pocket variety.

Though any objective look at this market is very much like hitting a moving target, I acquired three products which I believe are fairly representative of the entry-level to upper-mid to premium class of pocket binocular that can be purchased. First off, let’s come up with a working definition of a pocket binocular. To my mind, these would be instruments under 30mm in aperture and have magnifications in the range from about 6x  to 10x. As their name suggests, they are small enough and light enough to fit inside a regular pocket (though some pockets are certainly larger than others lol!)  and so would be no larger than about 4 square inches in area and weigh less than about 400g.

Unlike all the other classes of binocular; including compacts, full-size and large instruments; the reader may be surprised to learn that even the most expensive models in the pocket class of binocular are not exorbitantly priced. Indeed, you can acquire models from the threee premium binocular manufacturers(Zeiss, Swarovski and Leica) for about £500 or sometimes less. This reflects their limited utility; very useful for hiking and other outdoor excursions that require strict minimisation of weight but ultimately not an instrument one would happily use where there is easy access to a larger(say mid-size) instrument. That said, you can get essentially the same performance out of some models that cost significantly less than the premium brands, if you know what to shop for. That just reflects how manufacturing technology has caught on.

Now, I do a fair amount of hill walking and have learned the hard way that even my favourite binocular – the magnificent Barr & Stroud Savannah 8 x 42 wide angle – is a bit of a pig (weight wise) to climb with. That stoked my interest in acquiring a smaller unit dedicated to enjoying quick looks around the landscape from an elevated vantage and this naturally led me to testing three roof prism-based units units that can be acquired relatively inexpensively; either newly purchased or acquired second hand; the Celestron Nature DX 8 x 25mm (purchased new for £59 plus shipping), the Opticron Aspheric 8 x 25mm LE (actually my wife’s binocular, purchased new for £110 a few years back with the slightly modified new version retailing now for £129) and a Pentax DCF 9 x 28mm (purchased second hand for £119 but still under warranty and now available for £199 in the newer (AD) incarnation).

Yours truly recently surveying the landscape with a pocket binocular atop the Meikle Bin, Campsie Fells, Scotland, elevation 1,870 feet. Check out the gibbous Moon at upper right!

These were not acquired for specific astronomical use, though I did find out that there are significant differences between them when looking at some astronomical targets. But you’ll need to read the rest of this blog to find out those details!

Nota bene: A new discussion has arose on tiny binos here lol.

Let’s take a closer look at the instruments. First up, the Celestron Nature DX 8 x 25. Full specifications here.

The Celestron Nature DX 8 x 25 has twist-up eyecups giving very comfortable eye relief.

This very cost-effective pocket binocular from Celestron offers many attractive features for the savvy consumer. Weighing 343g, the package includes the binocular, a basic neck strap, a lens cloth, nicely fitting rubberised ocular and objective lens covers and a decent carry case. It also includes a basic instruction manual to get you going fast. What is rather remarkable is that the binocular has a few optical features that were offered only on premium models just a decade ago; including fully multi-coated optics, BAK-4 prisms, with phase correction. It is also waterproof and is purged with dry nitrogen gas preventing internal fogging and minimising internal corrosion. The Celestron Nature DX 8 x 25 offers a very generous field of view of 7.2 angular degrees which is actually quite remarkable for such a low cost unit.

Looking down on the Celestron Nature DX 8 x 25. Note the specifications on the large, central focusing wheel.

The plastic eyecups twist upwards giving a comfortable 14mm of eye relief. The cups are kept down for eye glass wearers. The dioptre setting is reassuringly stiff and is located just under the right eyecup. Viewing through the binocular is very comfortable and the large field of view is bright and sharp across most of the field. Only in the outer ten per cent of the field can one detect a little softening of the image. Chromatic correction is very good, as is the control of pincushion distortion.

The objective lenses on the small objectives of the Nature DX binocular have good coatings.

It has a stiff, central hinge that can accommodate virtually all IPDs. It has quite a solid feel in use. The body is made of a low mass but strong polycarbonate material with a plastic- like(read non rubberised) green overcoat. Grip is adequate but I would have liked to have a higher friction, rubberised over coat.

The large, centrally placed focusing wheel is quite stiff and only turns through ~ 290 degrees, so less than 1 revolution between infinity and closest focus(an impressive 2m). This result is at odds with the claims of some other reviews I have read on the Nature DX (720 degrees, or two full revolutions claimed!). See here for an example. Perhaps it is unique to this small Nature DX model?

The instrument gives remarkable depth of focus! When the wheel is turned to the end of its travel so that objects in the far distance are focused, my eyes were able to get very sharply focused images all the way down to about 35 yards distance!

I did discover a significant flaw in this instrument however; point it at a bright light source at night or at the Moon, and it will show strong internal reflections/lens flaring. I found observing the Moon to be particularly annoying with this binocular and if imaging a backlit scene during the day, it will also throw up the same reflections which reduces the punch of the image. You cannot see these reflections when looking at most scenes though; it shows none on even the brightest stars, as verified by my testing on the Dog Star, Sirius. I do not know whether these internal reflections are found on other Nature DX models but it can (and should) easily be tested. But for £59 plus shipping, I can’t really complain. Afterall, some internal reflections are found in all binoculars, even premium models.

The Celestron Nature DX pocket binocular comes with a decent soft-padded case, a lens cloth and a basic neck strap. The ocular and objective lenses also have good rubber caps.

The user will have to decide if this flaw is annoying enough to justify passing on the purchase of this product. Everyone’s different I suppose! This might bother some observers more than others; the instrument is otherwise quite excellent and I can see how it has been lauded(Cornell Ornithology Lab) as a great entry-level birding binocular. That said, all of the reviews I have read never mentioned this flaring/internal reflection, which is somewhat alarming. It just seems to have gone unnoticed. I think simple tests like this should be mandatory for all optical testers.

The model has recently been discontinued from the Nature DX line.

Next up, the Opticron Aspheric 8 x 25 LE

The little 8 x 25 Opticron Aspheric LE pocket binocular.

The Opticron Aspheric LE 8 x 25 is a well-designed pocket binocular. Tipping the scales at just 291g, this is the lightest binocular of the three by a significant margin. It has a very well constructed double-hinge design that also allows the barrels to be folded right up to each other, also making it the most compact of the three models discussed here. The hinges fold outwards to accommodate virtually any IPD and can be comfortably set in seconds.

The Opticron Aspheric LE 8 x 25 has an elegant double-hinge design that enables it to be folded up( it’s just 66mm wide) for very snug transport anwhere, anytime.

Unlike the Nature DX, it is not weatherproof or nitrogen purged; but not a big deal as my wife likes to remind me. As you can discern from the first photo of the unit above, the optics are of high quality with a full multicoating, which includes a phase correction coating on the roof prisms, that delivers bright, high-constrast images of objects during well-illuminated, daylight conditions.

The eyecups twist up for non-eyeglass wearers and offers generous eye releif (16mm). The eye cups are of a higher standard than those found on the Celestron Nature DX and appear to be rubber-over-metal. They stay in place reasonably well.

The rubber-over-metal twist up cups are of a higher standard of workmanship compared to the Nature DX binocular and offer 16mm of eye relief. Note the small, central focusing wheel that is quite hard to grip.

Optically, this is a sharp shooter, offering well-correcetd images over a 5.2 degree field. I felt that this was rather a small field though, in comparison with that offered by the Nature DX binocular discussed previously and does take a bit of getting used to if one is especially fond of wider views. But its aspherical optics certainly deliver the readies, producing a lovely, flat, low-disortion images from edge to edge. I guess this is the price one has to pay for a more restricted field of view.

Internal reflections are much better controlled in this unit than in the Nature DX, as evidenced by pointing the instrument at the bright Moon at night or other bright sources of artificial light. Backlit scenes during the day are a tad more contrasted too. Besides the small field, the only other issues I had with the Opticron pertain to its very small focusing wheel, which is hard to grip in my (not overly large) man-sized hands, and it’s a nightmare to use with gloves.  It can often prove difficult to turn the focuser fast enough to keep up with moving terrestrial targets such as rapidly moving corbies. I believe the updated WP model(with the same specifications so far as I can see) has a slightly larger focusing wheel with better grip.

In addition, I found its very light weight a bit offputting, as it was difficult to find a good, secure position in my hands. The unit comes with its built-in lilac coloured lanyard, so no need to affix a separate strap. I’m not really a fan though, as it feels as though you are being slowly garrotted when walking with the binocular around your neck lol!

The tiny but well made carrying pouch for the Opticron Aspheric LE 8 x 25 pocket binocular.

All that being said, my wife loves it; lanyard and all! She says it looks as good as operates, with small, elegant black tubes that easily fold up in tiny pockets. It’s also perfect for her quick looks at the bird table in our garden and for taking on her hill walks with her girlfriends. I don’t use it very often though, as her dioptre setting is much different to my own!

Finally, let’s take a good look at the Pentax DCF 9 x 28mm LV pocket binocular.

A liitle gem: the remarkable Pentax DCF 9 x 28mm LV pocket binocular.

 

Some information about the unit when the product was first launced back in 2009.

And here’s an independent review of the same instrument.

The reader will note something rather interesting from the review article linked to above; all of the compact binoculars highlighted in the table the reviewer presents, including premium models, like the Leica Trinovid 10 x 25, do not use ED glass. This is an important point, as it serves to highlight the fact that no real gains in performance are achieved by inserting one or more ED elements in the objectives of these binoculars. If there was an obvous advantage, don’t you think companies like Leica would have insisted on using it? Though it is conceded that some pocket models like the Zeiss Terra ED 8 x 25 do have ED elements, their cost is actually consideraby less than the Leica Trinovid(as of early 2019 average UK pricing). I view the use of ED glass in such small binoculars as a clever marketing ploy.

Now back to the Pentax DCF binocular.

The instrument tips the scale at 365g; definitely on the heavy side as pocket binoculars come, but still under the 400g cut-off point between pocket and compact models.

The instrument is weather proof and is dry nitrogen purged to prevent internal fogging of the elements. The optics are fully multi-coated and the prisms have been phase coated to improve brightness and contrast in the images. The instrument has a field of view of 5.6 degrees, noticeably larger than the Opticron Aspheric but not nearly as large as that yielded by the Nature DX. Then again, the Pentax provides a power of 9x and not 8x as the other models do, which invariably has an impact on the maximum true field achieved.

Looking from the ocular end of the Pentax DCF 9 x 28.

The instrument is very well endowed from a mechanical point of view, with a large centrally placed focusing wheel with excellent grip, even while using gloves. The wheel rotates through about 300 degrees, so not very much in the way of travel  from infinity to minimum close focus. The barrels are covered with a tough rubber coat making it especially suitable for rough field use.

I really like the metal-over rubber eyecups, which are strong and comfortable. The user has a choice of 4 positions, from fully down use with eye glasses to fully extended. I found having the eyecups twisted up to the mid-position provides all the eye relief I require without glasses. When clicked into place at a given position, the eyecups maintain their positioning even after applying unreasonable pressure.

The high quality twist up rubber over metal eyecups click into four positions and hold those positions well in field use. Note the dioptre ring under the right eyecup.

The underside of the binocular has thumb indentations to assist holding the binocular steady in field use.

The underside of the binocular has thumb indentations to assist with holding the binocular stably.

The anti-reflection coatings on the Pentax DCF are very well applied and I would rate them superior to those on the Opticron Aspheric model previously discussed. The Pentax is not nearly as compact as the Opticron however, as seen in the photo below. This was not found to be a problem; it’s still small enough to fit into a coat pocket or the palm of my hand.

The central bridge connecting the barrels do not allow the Pentax DCF to fold into the same compact size of the Opticron Aspheric binocular.Note the coatings on the Pentax( left) are a little bit less reflective than the Opticron( right).

The central hinge of the Pentax DCF is reasonably stiff but not quite as stiff as that of the Nature DX model. I find that the latter is just right for quick deployment with the correct IPD(for my eyes) achieved in seconds from its fully folded in position.

The objectives of the Pentax DCF LV are noticeably larger than the 25mm models, which has an immediate impact on its light gathering performance. Afterall, it gathers about 25 per cent more light than the other models discussed in this blog. I like the recessed position of the objectives with a little overhang from the barrels. This helps to reduce lens flaring and /or the control of stray, off-axis light while using it in the field.

The Pentax DCF objectives have excellent coatings applied to them and are nicely recsessed from the top of the barrel to help suppress stray, off-axis light.

The Pentax DCF LV 9 x 28 feels very comfortable while in use and has more of the attitude of a 30mm compact binocular than the smaller 25mm instruments tested previously. The 9x magnification is immediately apparent compared to using a 8x unit.The human eye will easily register a 12 per cent increase in magnification with just a little experience. Images appear equally bright in the Pentax in comparison to the Opticron (afterall they have the same exit pupil of 3.1) but the greater field of view is readily appreciated. Images are very sharp and contrasty with only very slight softening at the edge of the field. Control of stray light is very good; almost as good in fact as my larger Barr & Stroud roof prism binoculars( yep, you really have to experience them to know of course!). This is immediately apparent when turning the instrument on a bright Moon which shows that glare and internal reflections are very well controlled. The large focusing wheel is a bonus, moving smoothly and precisely but with a little bit more tension than I would have liked. Still, it’s perfectly fine for the tasks I intend to use it for.

I measured the close focus to be just under 10 feet. I find the 9x very useful in daytime use as it brings objects that little bit closer, aiding in the identification of small birds or subtle landmarks in the distance. I’m glad I didn’t go for something with a 10x magnification though, as this would probably have generated images a tad too dim for my liking, but your mileage may vary! It will serve me well for occasional hill walking ventures and at sports events, where its small size won’t cause me to look too out of place.

If money is an objection or if you’re frugal like me, I’d recommend purchasing quality instruments second hand. A few thoughtfully chosen questions and the answers they generate from the seller never go amiss. If you do your research and know what to look for in a binocular, you can secure real bargains for relatively small financial outlays.

Ultimately though, I would not recommend spending huge amounts on these small instruments. I find them, well, a bit unexciting. They’re just too small to use for prolonged astronomical appllications and their daytime performance, while good in bright light conditions, is noticeably inferior to mid-sized instruments under dull or low light situations, such as at dawn or dusk. In comparison, my 8 x 42 is, by far, my most used binocular; providing a great balance between portability and utility by day or by night. Sure, it’s nice to have a quality pocket binocular around, but unless I were to embark on a trek through the Himalayas, I can’t see myself reaching for one all that often.

Thanks for reading!

 

Dr. Neil English’s latest historical work, Chronicling the Golden Age of Astronomy, takes a detailed look at the life and works of great telescopists from the early 17th century right up until the modern era.

 

 

 

 

De Fideli.