Product Review: The Celestron Trailseeker 8 x 32.

The Celestron Trailseeker 8 x 32 mid-size binocular.

Are you looking for a good quality mid-size binocular but don’t have £1000+ to spend on a Swarovski or a Leica or some such? Perhaps you’re looking for a nice Christmas gift for a loved one or a friend? Well, the Celestron Trailseeker 8 x 32 binocular could well be all the instrument you need!

If you’ve been following my binocular blogs, you’ll know that I have had to follow a very steep learning curve in order to bring my readers genuinely good bargains. And while it is generally true that you get what you pay for, there are always products that surprise in very pleasant ways, and this little binocular is one such instrument!

Celestron is not a name you’d normally associate with a high-quality roof prism binocular, but their optical engineers have successfully designed a great product in their Trailseeker range. The Trailseekers all feature full broadband multicoatings on all optical surfaces. The BAK-4 Schmidt-Pechan prisms are both phase and dielectricly coated to increase light transmission to the order of 90+ per cent, making it as efficient as ultra-premium models costing many times more.

The binocular measures 4.8 inches wide and 4.8 inches deep, standing just 1.9″ high; so very compact and easy to store in a backpack or small carry case. The binocular can be easily mounted to a tripod or monocular for additional stability.

My flashlight tests carried out indoors, as well as those conducted out of doors on bright street lighting and strongly backlit scenes showed that this model has excellent stray light and glare control. Indeed, its baffling of stray light is up there with the very best binoculars I have had the pleasure of testing. I was literally blown away by how resilent this binocular is to the intrusion of stray light! What that means in practice is that you get very high contrast images, rich in detail that would impress most anyone who tries them out!

The Trailseeker has a very robust magnesium alloy chassis; a feature often only found on premium models.

The binocular has a very strong and robust magnesium alloy chassis that is often only offered in the most expensive brands. It is also remarkably lightweight, tipping the scales at just 454g(16 oz). The strong, lightweight alloy frame also means that it will withstand knocks and bumps better than other models having cheaper plastic or ploycarbonate housings. The optics are 0-ringed sealed and purged with dry nitrogen gas to prevent internal fogging during cold-weather applications and corrosion of any metal parts used inside the instrument. The chassis is finished in a thick, rubberised green armouring that has excellent grip and which protects the main body from the elements. The underside of the binocular has neat thumb indents that make gripping the instrument very intuitive.

The underside of the Trailseeker has neat thumb indents that make handling the instrument very easy and intuitive.

The eyecups are of very high quality. They are made from solid metal with a soft, rubberised finish that makes them very comfortable to observe through. The eyecups twist up with two stops and hold their positions very well indeed, with absolutely no play. The eyerelief is 15.6mm which is adequate for most eyeglass wearers. Close focus is about 6 feet and the field of view is a very generous 7.8 angular degrees(136m@1000m).The dioptre setting is located under the right ocular lens and has just the right amount of friction to keep it rigidly in place from day to day, and from week to week.

The focuser and ocular lenses of the 8 x 32 Celestron Trailseeker.

Optically, the 8 x 32 Trailseeker packs a very powerful whallop. The instrument arrived well collimated out of the box, as evidenced by the perfectly correlated left and right eye images of a chimney located about 150 yards in the distance. The images are razor sharp with a large central sweetspot, softening as you move toward the edge, just like any other binocular. Chromatic aberration is a total non issue(I think this issue in many good quality binos available today has more heat than light). I see a lot of amateurs making bold claims about how ED glass elements make the image ‘brighter’ but in reality, the brightness of the image in the best quality binoculars has little to do with ED glass and much more to do with the quality of the coatings(particularly those of the dielectric variety) employed on the roof prism. For example, I was quite taken aback when I tested this unit out in low light conditions during dusk, when they completely outperformed a very high quality 8 x 25 pocket binocular lavished with premium ED Schott glass and dielctric coated roof prisms. There was no magic though; the very efficient light gathering capabilities of the Trailseeker’s larger 32mm objectives stole the show; it was much brighter, no ifs or buts about it!

A Curious Aside: I wanted to get to the bottom of this somewhat ‘fishy’ claim regarding ED glass, you know; that it gives brighter images and all that, so I decided to investigate some products on line. I mean, I can see why a better focused image in an ED instrument would confer a very slight advantage over a standard achromatic unit with the same coatings, but certainly not to the extent some folk have claimed in the past. Well, I didn’t have to search long before I stumbled on a comapny, Hawke, who make a few models of 8 x 32s, and out of sheer dumb luck(not really), I was able to compare the specifications of their Endurance ED 8x 32 and their Fronier HDX 8 x 32. As you can see from the specs, the Endurance ED does indeed have ED glass, while the Fronteir HDX does not. However, it is the latter that sells for a higher retail price(£259 as opposed to £199)! The one significant difference between these models is that the Endurance ED does not have dielectric coatings on the prisms while the HDX model does. And as this chap confirms, the HDX delivers the brighter image!

So there you have it!

I will further investigate these claims in a later blog, God willing.

No’ bad ken?

NB: The author has no affiliation with any of the binoculars discussed in any of his blogs.

A good design feature: the deeply recessed (9mm) objectives are well protected from rain, dust and peripheral glare.

Although not my favourite size of binocular, the 8 x 32 format is great for birding and other nature studies. Its greater light grasp and generous field of view will enable the user to work under fading light more efficiently and for longer than any pocket glass. The central focuser is well made but was a little on the stiff side when I first acquired it. But with regular use, it has loosened up nicely to allow good, fast focusing on mobile targets like birds in flight, or scurrying squirrels racing up and down a tree trunk. Going from one end of the focus travel to the other involves turning the focus wheel through one and a half full revolutions.

The Celestron Trailseeker 8 x 32 has very high quality twist up eyecups which make viewing through them very comfortable and immersive.

The little Celestron Trailseeker 8 x 32 produces very nice images of the heavens. Looking at a rising full Moon in a frosty winter sky showed very sharp, contrasty images rich in detail, with virtually no stray light that was all too easily evident in a few lesser instruments I have tested. Moving to the edge of the field does reveal some lateral chromatic aberration and some image softening but it’s perfectly acceptable to my eye. What is more, some of these off-axis aberrations can be effectively focused out. Star fields are beautiful and sharp with a jet black sky background, and the Trailseeker has served up very impressive views of some showpiece deep sky targets such as the Pleiades, the Hyades, the Sword Handle of Orion, the Alpha Persei Association and the great spiral galaxy in Andromeda. Stars stay sharp and pinpointed across the majority of the field, with only the outer 20 per cent or so beginning to show some enlargement. That said, I found this imperfection to be very acceptable. Indeed, you would have to shell out many times the modest cost of this binocular (£126) to get anything better in this regard methinks!

Unlike many other high quality binoculars, the accesories that come with the Trailseeker are also of exceptional quality. You get a very nicely made carry case that fits the instrument perfectly(shown above). You also receive a very nicely padded neckstrap with a Celestron orange logo.  That said, I discovered a slight hitch when I attached the supplied neck strap; when I tried to fold it around the binocular to insert it inside the carry case, it proved very difficult and caused the case to bulge outward a bit more than my liking. In the end, I elected to attach a lighter but lower quality strap to the binocular as an interim measure. The instrument also comes with a good quality binocular harness, though I’ve not tried it out for size yet. In addition, the binocular comes with fully attachable rubber ocular and objective lens covers, a microfibre lens cleaning cloth, and a neat user manual in five modern languages. The package is protected by Celestron’s limited lifetime warranty.

The Celestron Trailseeker 8 x 32 package.

All in all, the Celestron Trailseeker is a most impressive piece of kit and it’s obvious that the company cut no serious corners in bringing these high quality instruments to market. I think it represents exceptional value for money in a market saturated by a string of  similarly priced, but lower quality offerings. Kudos to Celestron for making these instruments available at such an incredible price(they originally retailed for over £250 when first launched but are now widely discounted)!

Disclaimer: The instrument was purchased from Tring Astronomy Centre, the staff of which proved very professional and who insured a super fast delivery.

Additional Information:

Promotional Video on the Celestron Trailseeker Binocular Range.

BBR overview of the external features of the 10 x 32 Trailseeker Binocular.

Don’t just take my word for it: read what other purchasers have said about the Celestron Trailseekers.

BBR Review of the 10 x 32 Celestron TrailSeeker Binocular.

BBR Review of the Celestron Trailseeker 8 x 42 Binocular.

 

Neil English is the author of seven books in amateur and professional astronomy, including a 665 page history of visual astronomy: Chronicling the Golden Age of Astronomy, favourably reviewed by several amateur and professional astronomers.

 

De Fideli.

Old vs New.

How does a classic Zeiss binocular square up to a modern roof prism binocular?

Unlike telescopes, which are mainly used by dedicated amateur astronomers, binoculars, for obvious reasons, are owned and used by a much broader cross section of the general population. When my students get to know me, they will inevitably have to endure my unbridled enthusiasm for optical devices of all kinds lol, and that includes binoculars. One of my mathematics students, Sandy, expressed an unusual interest in some of my instruments, and he further informed me that his parents, who run a small ferrying business at Balmaha, on the shores of nearby Loch Lomond, used several binoculars in their everyday work. My interest was further piqued when Sandy told me that his grandfather owned a big Zeiss binocular, which was inherited by his father and would eventually be passed on to him in the goodness of time. I asked Sandy whether he would be willing to bring the Zeiss binocular by so that I could have a look at it. After checking with his parents, Sandy agreed and kindly allowed me to use it for a week in order that I could assess it and give it a good clean. Naturally enough, I jumped at the opportunity!

The instrument, a Carl Zeiss Jenoptem 10 x 50W porro prism binocular, came in a lovely leather case; a far cry form anything made in this era.

The Zeiss Jenoptem 10x 50W complete with original leather carry case.

The instrument had no lens caps and so had accumulated quite a bit of grime on both the ocular and objective lenses over the years. The Jenoptem, which was manufactured in East Germany(DDR), featured a Zeiss multi-coating, which helped me to date it to after 1978, when the company apparently began to apply their anti-reflection coatings to all the lenses and prisms in the optical train. So my guess is that it was probably acquired in the early 1980s. I believe Zeiss Jena offered a higher quality porro 10 x 50 in the Decarem line around the same period, but I have not had the pleasure of testing one of these units out.

The Zeiss Jenoptem is multi-coated.

The instrument has a very Spartan look and feel about it. Weighing in at about 1 kilogram, the Jenoptem is built like a proverbial tank, with a central focusing wheel and right eye dioptre.Turning the nicely machined metal focusing wheel first clockwise, and then anti-clockwise, all the way through its trave,l showed that it was still in excellent working condition, with zero backlash and bumping that one usually encounters with cheaper porro prism binoculars.

As expected from Zeiss, the Jenoptem has a very well made focuser that moves with silky smoothness and with zero backlash.

To begin the cleaning process, I unscrewed the objective housings from the front of the binocular in order to get at the inside surface of the objective lenses, which had a significant amount of grime as well as a small amount of fungal growth. Using a good quality lens brush, I carefully removed much of the dust before using a microfibre lens cleaning cloth soaked in a little Baader Optical Wonder fluid. In just a few minutes I was able to remove the remaining grime on both the outer and inner surfaces of the binocular objectives, as well as the surfaces of the prisms in the rear module of the instrument. The ocular lenses were also given a good cleaning.

The objectives of the Zeiss Jenoptem can be accessed by uncrewing the front of the binocular from the prism and ocular housing.

I was able to verify that the prisms were indeed coated in the same way as the objectives, although I also discovered that the steel clips holding the prisms in place had rusted significantly over time. I did not attempt to clean the clips, as I judged that doing so might throw the instrument out of collimation.

Note the rusted steel clip holding one of the prisms in place, as well as the anti-reflection coating of the second prism(after cleaning).

The objectives on the Jenoptem after cleaning. Note the anti-reflection coatings.

Seen in broad daylight, I was able to verify that the lens coatings had not suffered much in the way of wearing, looking smooth and evenly applied, giving a bluish or purple cast, depending on the angle of view.

The appearance of the objectives in broad daylight after cleaning.

 

And the ocular lenses.

Optical tests:

After screwing the objective modules back into place, I was now ready to begin my optical tests of this older Zeiss binocular. I compared the views served up by this instrument with those garnered by my Barr & Stroud 10 x 50 Sierra roof prism binocular that I use almost exclusively for astronomical viewing. After setting the right eye dioptre on the Zeiss to suit my own eyes, I started with an iphone torch test to assess how the instruments fared in suppressing glare and internal reflections.

The Zeiss 10x 50W Jenoptem(right) and my Barr & Stroud 10x 50 Sierra roof prism binocular(left).

Because the Zeiss does not have the same close focus (~2m) performance as my Barr & Stroud, I had to place my iphone torch several metres away in my hallway in order to get the Zeiss to focus on its light. As usual, the torch was adjusted to its highest (read brightest) setting. Comparing the two in-focus images, I could see that the Zeiss fared considerably worse than the Barr & Stroud. Specifically, it picked up two fairly bright internal reflections, as well as quite a lot of contrast-robbing diffused light, which rendered the Zeiss image considerably less clean and contrasted in comparison to my control binocular. The difference was quite striking!

After dark, I aimed the binoculars at a bright sodium street lamp and again compared the images served up in both instruments. As expected, the Zeiss showed much more in the way of internal reflections, with a lot of diffused light that produced a fog-like veil around the street lamp. The Sierra 10 x 50 in comparison served up a much more ‘punchy’ image with much better control of internal reflections and far less of the foggy, diffused light evidenced in the Zeiss.

Next, I compared the Zeiss and the Barr & Stroud Sierra on a daylight test, examining a tree trunk in the swing park about 80 yards from my front door. Again, the difference between both instruments was striking! Although the image was very sharp in the Zeiss at the centre of the field, it was noticeably dimmer than the Sierra. That diffused light I picked up in the iphone torch test created a foggy veil that significantly reduced its contrast in comparison to the control binocular. I was also able to discern many more low contrast details in the Sierra owing to its ability to gather significantly more light than the older Zeiss. The colour cast presented by both binoculars was also noteworthy. The Zeiss threw up quite a strong yellowish colour cast  to the Sierra, which showed a much more neutral cast in comparison.

Examining the periphery of the same field also showed that the Sierra was exhibiting a larger depth of focus than the Zeiss, which was quite unexpected, as I had been given to understand that porro prism binoculars in general show more depth of focus than their roof prism counterparts. In addition, the Zeiss showed more distortion at the edges of the field than the control binocular.

The Zeiss Jenoptem has very tight eye relief, which I estimated to be just 10mm. The Barr & Stroud Sierra, in contrast, has much more generous eye relief in comparison- 17mm – making it significantly more suitable for eye glass wearers. Indeed, I found it difficult to image the entire field in the Zeiss, having to move my eyeball around to see the field stops.

In summary, these daylight tests clearly showed that the venerable Zeiss was no match optically for the Barr & Stroud 10 x 50 roof prism I had tested it against. The latter was simply in a different league to the former, no question about it!

Handling in the Field:

The Zeiss is rather big and clunky in my small hands and is more difficult to find that optimal position while viewing for extended periods. Weighing more than 200g more than the Sierra, it is also harder to hold steady. The significantly smaller frame of the Sierra roof prism binocular is much easier to negotiate, and is simply more comfortable to use. In addition, the Zeiss has no provision to mount it on a lightweight tripod or monopod, but the Sierra, like most other modern binoculars, does.

Astronomical tests:

Though the weather proved quite unsettled during the week that I tested the Zeiss, I did get a few opportunities to test it out on the night sky. Once again, I used my Barr & Stroud Sierra 10x 50 roof prism as a suitable control. My first target was a bright, waxing gibbous Moon fairly low in the southern sky. The Zeiss threw up more in the way of internal reflections than the Sierra. The colour cast of the lunar surface appeared more yellow in  the Zeiss compared with the cleaner images of the Sierra. As I expected from my iphone torch tests, the sky immediately arround the Moon was also brighter in the Zeiss, with noticeably lower contrast than the Sierra. Moving the Moon to the edge of the field also showed that the Zeiss threw up more distortions than the Sierra control binocular.

Turning to Vega high in the northwest after sunset produced good on-axis images in both binoculars, but when moved to the edge of the field, the Zeiss threw up that little bit more distortion than the Barr & Stroud Sierra. The same was true when I examined the Pleaides and the Hyades in Taurus.

Conclusions and Implications:

The Zeiss Jenoptem was a good binocular in its day but is clearly inferior in almost every sense to the Barr & Stroud roof binocular used in comparison. 40 years ago, the Zenoptem would have set the average factory worker a whole month’s salary to acquire new. In contrast, the Barr & Stroud Sierra can be had for between £100 and £120 in today’s market.  The value of waterproofing was made manifest in the observation of rusting of some of the metal internal components of the Zeiss. The Sierra, in contrast, is fully waterproof, o-ring sealed and purged with dry nitrogen gas to inhibit internal fogging and corrosion of any metallic components used in its construction.

Enormous advances in optical technology over the last four decades, particularly full broadband multi-coatings applied to all lens and prism surfaces, higher quality optical glass, as well as phase coated prisms on the roof binocular, collectively allow very efficient light transmissions to the eye. This is all the more remarkable since roof prism designs usually have many more optical components than their porro prism counterparts.

Better eregonomics in modern roof prism binoculars as well the employment of strong, low mass polycarbonate housings in their design make them lighter and easier to use than their porro prism counterparts from a generation ago. All of these add to the comfort of using them either during the day or at night when looking at the heavens.

I had a look on ebay to see what these old Jenoptems were being offered for. I found quite a few of them selling for between £150 and £200, so not the high prices demanded by other classic binoculars.

Like with all optical firms, time has marched on, with modern binoculars offering much better performance than earlier models.

This comparison test must have implications for many people who already own or use older binoculars and who have not compared them to modern incarnations. And that’s as true for Zeiss as with any other manufacturer. Indeed, I was quite shocked at how much better my first quality roof prism 8 x 42 roof prism binocular fared compared to an old 7x 50 porro I was gifted back in the early 1990s. Technology has well and truly marched on! And while I like classic instruments just as much as the next guy, I see little point in using any when even modest instruments created in the modern age are likely to perform better than similar instruments made a generation ago. It’s just a hard fact of life.

The technology of the past is certainly interesting but it would be daft to neglect the advances offered in the modern era.

 

I would like to extend my thanks to Sandy and his parents for allowing me to test drive these old binoculars. I will be advising him to use lens caps on the optics when not in use and have also provided a sachet of silica gel dessicant to minimise moisture-induced corrosion of the optic.

 

Neil English discusses all manner of classic telescope technology in his 650+ page historical work, Chronicling the Golden Age of Astronomy(Springer-Nature).

 

De Fideli.

A Magical Hour with my 130mm F/5 Newtonian.

A grab ‘n’ go telescope on steroids.

Anno Domini MMXIX

My conversion to Newtonian telescopes continues apace. Though I’ve had my wonderful 130mm f/5 Newtonian travel ‘scope for a few years now, it never ceases to impress me. And my observations on the freezing night of November 18 with the same instrument only served to consolidate those sentiments.

I set the telescope out on its trusty Vixen Porta II alt-azimuth mount about 10.30pm local time and tweaked its collimation before leaving it to cool down from an indoor temperature of 20C to an outside temperature of -5C. The optical tube is quite rigid and it holds accurate collimation very well, which is fine for general observing, but I always fine-tune the alignment of its two mirrors when going after the tightest double stars. I knew conditions would be good for such an activity by noting how little Vega was twinkling low down in the western sky, while bright stars like Capella and Mirfak located high overhead shone with a steady, planet-like gleam.

The tube is insulated with a thin layer of cork and overlaid by black flocking material. I have noted that this affords extra thermal stability to the telescope, especially as temperatures drop rapidly(as occurs during acclimation on these cold nights). I do not use any air-blowing fans to accelerate cooling of the primary mirror, but this has never really been an issue with this small Newtonian telescope.

After enjoying a lengthy binocular session using my 20 x 60 on a simple monopod, I began an hour of telescopic observations on a number of seasonal double stars, beginning about 11:20pm. Orion was quite well placed  east of the merdian, so I inserted my Meade 5.5mm UWA yielding 118x on a fairly low lying Rigel, carefully focused and observed the stellar image. Wow! What an amazing apparition! I was greeted by an intensely bright image of this white supergiant star, with beautiful diffraction spikes radiating outwards from a calm Airy disk. And just a little to its southwest, its faint close-in companion was easily discerned. That was enough of a confirmation that seeing conditions were indeed very good, so from there I panned the telescope northward to the better placed belt stars of Orion, examining both Mintaka and Alnitak at the same power. The images of both stellar systems were lovely and calm, with beautiful hard Airy disks betraying their companions with ease.

From there, I moved up to a more challenging system, 32 Orionis, located just a few degrees east-southeast of Bellatrix. Coupling a 3x achromatic Barlow lens to the Meade 5.5mm yielding a power of 354x, I carefully focused the image, watching it as it raced across the field of view. Sure enough, its close-in companion(separation ~ 1.3″) proved easy pickings for this light-weight 5.1-inch telescope situated just off to the northeast of the primary. Before leaving the celestial Hunter, I had a quick look at Eta Orionis, another fine, high-resolution target, consisting of a magnitude +3.6 primary and a tight, magnitude +4.9 secondary. Both were nicely resolved at 354x, and roughly orientated east-to-west.

Pointing the telescope at majestic Auriga, now very high in the sky, I trained the instrument at Theta, an old friend, and backed the magnification down to 236x by swopping out my 3x Barlow for a 2x Orion Shorty. That was more than enough to resolve its ghostly companion in the still midnight air.

I spent the next quarter hour exploring some favourite doubles in Cassiopeia, notably the lovely colour contrast pair, Eta Cassiopeiae, admiring the textbook perfect images of its yellow primary and ruddy secondary at 118x. And from there I moved to Iota Cassiopeiae, beholding this beautiful triple system at 236x. These views inspired me to swing the instrument westward into Andromeda, where I quickly tracked down another binary superstar, Almach, where the telescope showed me a gorgeous, crisp image of the orange primary and widely separated blue secondary at 118x.

After a quick look at Castor A, B and C at 118x, I trained my eyes on Propus, the ‘orange nemesis,’ as I have come to call it, which by now was reasonably well placed but still a few hours from culminating in the south. This system requires very high powers, so I broke out my 4.8mm T1 Nagler and coupled it to my 3x Barlow lens, delivering a magnification of 405 diameters. Carefully focussing the star, I watched it cross the field of view several times, observing its behaviour at this ultra-high power. During some moments, the system swelled up to become a rather unsightly seeing disk owing to a combination of thermal stress and variations in seeing, but sure enough, there was always prolonged moments where the image came together, as it were, allowing me to carefully examine the stable Airy disk. And it wasn’t long before I began to see the little blue pimple of light from its tiny secondary touching the marmalde orange primary. Having examined this system quite a few times with the 130mm Newtonian over the last few years, I have learned that good seeing doesn’t always yield commensurately good results. This I attribute to the slightly variable nature of this post-main sequence star, which can often hide the companion. But tonight, my patience paid off!

Plotina: strutting her stuff at -5C.

I ended the vigil shortly before half past midnight local time, by moving the telescope from my back garden to the front of the house, where I was greeted by the light of a silvery last quarter Moon, hanging above the Fintry Hills to the east. Inserting the little 4.8mm Nagler delivering 135x, I enjoyed some wonderful, crisp images of the battered lunar regolith, particularly the majestic Apennine Mountains strewn across its mid-section, near the terminator, as well as the magnificent desolation of the heavily cratered southern lunar highlands.

Simple pleasures of a telescope.

It was good to get out. But it was equally nice to retire the telescope indoors and reflect on the experience, sat next to a warm coal fire.

 

 

De Fideli.

 

 

 

In Search of a Good 8 x 32 Binocular.

Two mid-priced 8 x 32 binoculars compared: the Celestron Trailseeker(left) and the Helios LightWing HR( right).

The march of technology continues apace and never ceases to amaze me. This is especially true when it comes to telescope and binocular optics. You can now buy very decent optics at budget prices that display a level of quality we could only dream of a couple of decades ago. And technologies that were only available on premium optics up to fairly recently are now being offered by companies offering much more economical packages to sate the requirements of the masses.

That’s exactly how I feel about my recent foray into binocular testing. Advances in coating technology, in particular, has allowed many new optical firms to offer products that are edging ever closer to the performance levels only available on premium models until recently. Even entry-level roof prism binoculars feature decent anti-reflection coatings on all optical surfaces(which can be as many as 30 in a good roof prism binocular), as well as phase correction technology that significantly increase contrast, accurate colour rendition and image brightness. These less expensive models used either aluminium or silver coatings to boost light transmissions to as high as 80 to 85 per cent, but one can now obtain very economically priced models that also feature super-high reflectivity, broadband dielectric coatings that have increased light transmission to above 90 per cent, in touching distance of the most expensive, premium binoculars money can buy.

Unfortunately, many amateurs who enjoy using quality binoculars mistakenly conflate high-level optical performance with the introduction of extra low dispersion (ED) glass, but the truth is that such an addition contributes little to the quality of the optical experience. Much more significant is the use of higher quality coatings that significantly increase both the brightness and contrast of the images, which in turn enables one to see those finer details, thereby boosting resolution(perhaps this is why the Helios has HR in its name?). Of course, many(but not all) premium binocular manufacturers use a combination of ED glass elements and the finest dielectric coatings, making it all the more difficult for the user to assess the relative importance of either component. But I was able to explore and confirm the dramatic effects of the latter by putting a couple of  mid-priced 8 x 32 compact roof prism binoculars through their paces; a Helios LightWing HR and a Celestron Trailseeker(both pictured above), both of which feature premium quality dielctric coatings on the prism surfaces as well as high-quality broadband anti-reflection coatings on the multiple lenses and prisms used in their construction. Neither instrument contains ED glass elements however. For more on this, check out this short youtube presentation by an experienced glasser and binocular salesman describing one of the models I will be evaluating in this blog(the Helios LightWing),  and who formed the same conclusions as this author.

Both instruments were acquired from the same source, Tring Astronomy Centre. Their friendly and knowledgeable staff have offered exceptional service with a number of past purchases and I had thus no hesitation approaching them again for the acquisition of these 8 x 32 compact binocular models.

The first model I acquired was the Helios LightWing HR 8 x 32, which set me back £127 plus £5 to ensure an expedited delivery of the package within 24 hours of ordering. As soon as it arrived, I inspected the contents, which included the binocular with a rain guard, soft carry case, a lens cloth and generic(read single page instruction sheet) and padded neck strap. Within minutes of its arrival, I had the binocular out of its case to perform my iphone torch test in my living room to see how well an intense beam of white light behaved as it passed through the instrument. As I outlined in a few previous blogs, such a test is extraordinarily sensitive, showing up even the slightest stray reflections in the field of view and revealing how well the optical components suppressed the tendency of the light to diffuse across the field, reducing contrast as it does. Well, to my great relief, the result was excellent! Despite the torch being set at its highest setting in a darkened room, the Helios LightWing HR showed only the feeblest level of ghosting on axis. What is more, there was no difraction spikes or diffused light in the field! The image was exceptionally clean. Indeed, comparing the result to my control binocular, a Barr & Stroud Savannah 8 x 42, which also exhibits exceptional stray light control, the Helios was providing even better results!

To put this in some additional context, the torchlight test result for the Helios 8 x 32 was better than my Zeiss Terra ED 8 x 25 pocket binocular and a Swarovski EL Range 10 x 42, as I recall from my notes!

I now had a new standard by which to measure all other binoculars!

The same was also true when I placed the light beam just outside the field of view. Only a very minimal amount of glare was seen in the field.

The Helios LightWing HR 8x 32 revealed exceptional control of stray light and annoying internal reflections.

Wow!

This told me that the binocular ought to produce very high contrast images in even the most demanding conditions, either by day, glassing in strongly backlit scenes, or at night, when looking at bright light sources, such as artificial street lighting or a bright Moon. No doubt, this is attributed to a variety of factors including excellent multi-layer coatings on all optical surfaces, as well as a sound knowledge of how to adequately baffle the instrument.

………………………………………………………………………………………………………………………………

Note to the reader: My pet peeve is seeing excessive glare and strong ghosting from internal reflections in a binocular image. Indeed, I am quite intolerant of it! Moreover, I usually dismiss any reviews that do not test for this phenomenon. Unfortunately, that also entails taking the majority of user reviews I read online with a large dose of salt!

………………………………………………………………………………………………………………………………..

Examining the Helios, I noted the unusual colour cast of the anti-reflection coatings on both the objective and ocular lenses. They seemed to be immaculately applied! I also noted how the objectives were recessed very deeply; with ~ 10mm of overhang. This is a very good(and often overlooked!) design feature, as it cuts down on peripheral glare during bright daylight observations and also affords considerable protection from dust and rain.

The unusual colour cast of the anti-reflection coatings of the Helios LightWing objective lenses.

Mechanical assessment: The Helios is very well constructed. The chassis is fabricated from a magnesium alloy which combines light weight(500g) with good mechanical strength. This is an unsual offering in such a low-cost instrument, with cheaper polycarbonate or even ABS plastic being the rule rather than the exception on models offered at this price point. The central hinge had enough tension to maintain my particular IPD but I would have liked it to be just a little bit stiffer(just like my wonderful Barr & Stroud Savannah 8 x 42). I found handling the binocular to be unusually tricky, as the rubber eyes needed to attach the neckstrap protrude from the barrels a little too much, making it rather more awkward to get the binocular comfortably placed in my hands while observing.

The focus wheel is very large in relation to the overall size of the instrument. Indeed, I thought it was a little too large! Although I could get a good grip, rotating it showed that it was somewhat clunky and offered unusual resistance to movement. In contrast, the dioptre ring moved with silky smoothness, and you can actually see the right ocular field lens moving as you rotate it!

The buttery smooth right-barrel dioptre ring is a joy to adjust.

The eyecups are rather stiff but do extend upwards with two clickstops. With an eye relief of 15.6mm, eyeglass wearers will find it difficult to image the entire field. Fortunately for me though, this wasn’t a problem, as I don’t wear eye glasses while glassing. The cups are made from quality metal covered by a soft rubber-like material. They are very firm and hold their positions securely even when undue pressure is applied to them. Overall, a very nice touch!

The chassis is covered by a rather thin rubberised skin, which was somewhat thinner than I’ve seen on a variety of other binoculars I’ve sampled. As a result, it has slightly less friction while man handling, which can prove important, especially if used for prolonged periods in the field. It also means that it would wear down that little bit faster after extended use.

The Helios can be attached to a tripod or monopod for increased stability via the built-in bush located between the barrels, toward the front of the instrument.

Optical daylight testing: Scanning some autumn leaves in my back garden confirmed what I had witnessed in the torchlight test. The image was very bright and tack sharp with wonderful contrast and colour fidelity. There was nary a trace of chromatic aberration( which continues to affirm my belief that ED glass is unnecessary: -a marketing gimmick? – for such small, low power binoculars). However, this was only true in the central 50 per cent of the field. The outer part of the field became progressively softer with the edge being out of focus. Examining a telephone pole about 25 yards in the distance unveiled very strong field curvature as it was moved from the centre to the edge of the field of view.

I hit another snag when I attempted to image the Fintry hills about a mile in the distance. The focus wheel was racked to the end of its natural focus travel but I still could not quite reach a sharp focus. Adjusting the dioptre ring on the right barrel allowed me to just get there but the left barrel was still not sharply focused. After dark, I did a test on the bright star Vega, which unfortunately confirmed my daylight tests. Although I could achieve pinpoint sharp images in the right barrel, the left barrel showed that the star was badly bloated. Another test on the Moon showed the same thing. The right barrel gave a razor sharp image with exceptional contrast and no internal reflections or diffused light around it, but the image at the edge was badly out of focus.

The whole experience left me somewhat bewildered. Why expend so much effort into applying state-of-the art coatings into a binocular with nice mechanical features, only to see excessive field curvature in the outer part of the field? It just didn’t make sense! I mean, Helios could have made the field a little smaller(it has a true field of 7.8 degrees) with sharper edge definition and I would have been happy.  In reallity you see, I had been spoiled by the nearly flat fields presented by my Barr & Stroud Savannah 8 x 42(and over a larger field to boot- 8.2 degrees), as well as those presented by my Zeiss Terra pocket and my other models with aspherical ocular lenses. Needless to say I was disappointed and decided to contact the staff at Tring the same evening, explaining my findings.

Next morning, they contacted me, apologising for the defective optic, as well as suggesting that I could have a replacement Helios LightWing, or try a Celestron Trailseeker 8 x 32, which apparently had very similar specifications to the former. Now, I had a bad experience with an 8 x 25 Celestron Nature DX(an entry-level roof prism binocular) which showed far too much glare and internal reflections for my liking. But I had a good look at the specifications on the Celestron Trailseeker models, which were recently discounted by 20 per cent and were now being offered at the same price as I had paid for the Helios LightWing. After some deliberation, I decided to accept their offer of trying the Trailseeker. And to their credit, Tring shipped out the binocular, together with a return label for the Helios, the same day, and I received it less than 24 hours later!

How about that for customer service!

The Celestron Trailseeker 8 x 32 package.

With some trepidation, I opened the package and inspected its contents. First impressions looked good. I received the binocular, a much higher quality carry case, a binocular harness, tethered rubber objective caps and rain guard, a decent quality padded neck strap, a lens cleaning cloth and a comprehensive instruction manual dedicated to the Trailseeker  line of binoculars( in five languages).

The Trailseeker binocular specifications looked very similar to the Helios, which included the application of premium-quality phase and dielectric coatings, a 7.8 degree field (136m @1000m), Bak-4 prisms, o-ring sealed, dry nitrogen purged, making it fog proof and water proof(though to what extent was not revealed). And just like the Helios, the Trailseeker can be mounted on a tripod or monopod.

As with the Helios, the Trailseeker has very deeply recessed objectives (again about 10mm) but the anti-reflection coatings looked different in daylight;

The Trailseeker also has deeply recessed objective lenses but the coatings appeared different.

Just like the Helios, the Celestron Trailseeker has a rugged magnesium alloy chassis but the focus wheel is significantly smaller. Weighing in at just 450g, it is 50g less bulky than the Helios. The Trailseeker build quality is excellent; rugged, much easier to handle than the Helios and overall having better ergonomics. The tough, rubberised covering has better grip than the Helios too, and small thumb indentations on the belly of the instrument makes it that little bit more comfortable to hold in the hand.

Nicely placed thumb indents on the underside of the Trailseeker make handling that little bit more intuitive.

Well, you can guess what I did next; yep, I set up my iphone torch, turned it up to its brightest setting and placed it in the corner of my living room with the curtains pulled to cut off much of the daylight. With a good close focus of about 6.5 feet, eagerly I aimed the Trailseeker binocular at the light and examined the image.

Drum roll……………………………………….

An excellent result! Internal reflections were minimal, diffused glare was all but absent and diffraction spikes were very subdued. Comparing the Trailseeker to my Barr & Stroud Savannah 8x 42 control binocular showed that it was on par with it. What a relief! To be honest, I had some reservations about the Celestron, owing to my unfavourable experience with the cheaper Nature DX model, and so I half expected that they might skimp on this important process. But no, they did a very good job! So far, so very good!

I was also impressed with the mechanical attributes of the Trailseeker, which is difficult to ascertain vicariously without man handling it. Though quite conservative in design, the eyecups are of high quality(metal over rubber) but have a nice feel about them. They twist up much more easily than those on the Helios and have two settings. Like the Helios, the eye relief is pretty tight(15.6mm) for eye glass wearers but is plenty good enough for those who observe without glasses.They do not budge even when considerable force is applied to them. I would rate their quality as very high, so much so that I don’t think I will have much in the way of problems with them going forward.

The metal-over rubber eyecups of the Celestron Trailseeker are a good step up from the Nature DX models and feel very secure while glassing.

The focus wheel has a ‘plasticky’ feel about it but unlike the Helios, infinity focus does not lie at the extreme end of the focus travel. This is actually useful for ‘focusing out’ some of the aberrations at the extreme edge of the field. Unlike other user reviews of the Trailseeker, the focus wheel on the unit I received was quite stiff to operate out of the box but this will surely loosen up with more use. Rotating the focuser both clockwise and anti-clockwise revealed little or no backlash or bumpy spots that you often encounter on cheaper binoculars. Some users balk at the idea of using a plastic focuser but I cannot for the life of me understand why it would make much difference. I mean, if it works, it works! What’s to give?

The focus wheel on the Trailseeker is nothing out of the ordinary but does work well in field use.

The dioptre ring is located under the right eyecup. It rotates smoothly with just the right amount of friction.

Optical daylight testing: As I’ve illustrated above, good mechanical design and great control of stray light don’t count for much if the images don’t deliver. So I was eager to see how the Celestron Trailseeker behaved when looking ’round the landscape. Accordingly, I examined the same autumn leaves in my back garden set a few tens of yards away. This time, the results were very much more encouraging! The leaves focused beautifully, throwing up excellent brightness, contrast and sharpness with a much wider sweet spot than in the Helios, which I estimated to be about 70 per cent of the field.  I could immediately tell that there was much less field curvature in this binocular than in the Helios, allowing me to sharpen up the edge of field definition with only minor tweaking of the focus. This much reduced field curvature was also apparent when I examined the same telephone poll I observed with the Helios. Instead of the strong off-axis distortions I encountered with that instrument, as the pole was moved from the centre to the periphery of the field, the Trailseeker proved much more forgiving.

What a relief!

Having said all of this, there was more off-axis field curvature in the Trailseeker than in my Barr & Stroud Savannah 8 x 42, which, in comparison, throws up a wider and flatter field nearly all the way to the edge. As I’ve said many times before, the Savannah is a phenomenal operator given its very modest price tag. Perhaps some of the drooling gayponauts reading this blog right now could get off their fat backsides and confirm it!

Nah, probably too much to ask!

The Barr & Stroud Savannah 8 x 42 wide-angle binocular; an existential threat to the hubris of thieving gayponauts.

Nightime testing:

After dark, the Trailseeker delivered excellent results on artificial street lights, just as my torchlight tests reliably anticipated. There was no annoying glare, internal reflections and the diffraction spikes were small and very subdued. Turning the instrument on a low Moon skirting the horizon showed wonderful sharpness on axis, with well above average contrast. And when I placed the Moon at the edge of the field, it remained quite sharp, though visibly softened by a small amount of field curvature. Needless to say, it was in a completely different league to the Helios in this regard!

Later in the night, with the Moon having set, I examined the appearance of the large and sprawling Alpha Persei Association located nearly overhead at the time. This provided an excellent test of how its many bright stellar members would behave from the centre of the binocular field to the field stop. To my relief, the stars remained acceptably small and sharp across the entire field, with the stars at the edge of the field requiring only a small tweak in focus to improve their definition. They did not balloon to stupidly large sizes like I observed in the Helios.

Turning the binocular on the Hyades in Taurus gave very pleasing results too. Contrast was excellent with its many colourful stellar components remaining acceptably small and crisp even at the edges of the field.

I considered these results to be very acceptable. This is one small binocular that can be used profitably for nightime observations!

A Walk in the Countryside with the Celestron Trailseeker 8 x 32

Although the Celestron Trailseeker 8 x 32 is a small, high-quality and lightweight instrument, it is not readily pocketable, unless you have a coat that has rather large and deep receptacles. Having tried a few 8 x 32 binoculars, I personally find them a little awkward to use in comparison to my two favourite pocket binoculars like my Opticron Aspheric LE and my Zeiss Terra(both of which are 8 x 25 formats) or a larger instrument such as my 8 x 42. I just find the 8 x 32 format a bit kludgy in my rather small hands. That said, the 8 x 32 seems to be a popular choice for birders and other nature enthusiasts, who tire of schlepping around a larger instrument for hours on end. In good light, there’s no real advantage in using a larger format binocular and so I tend to use my pocket binos most often. But if you are observing in low light conditions, such as a dull, overcast winter day, late in the evening or early in the morning, the 8 x 32 would definitely be a better choice. I have verified this wisdom by comparing the views through my  8 x 25 Terra and the 8 x 32 Trailseeker at dusk, where the brighter images served up by the latter are plainly in evidence. And because you have a relative abundance of good quality light to play with, you can see more details in the image. Shimples!

Choosing a small binocular is a deeply personal choice that you can only decide on after trying them in the field.

The consensus view is that larger binoculars are more comfortable to use since their larger ocular lenses make it easier to place your eyes in the correct position to see and immerse yourself in the field of view. I believe there is definitely some truth in this, but in the end it’s really about what you get used to. I personally have no trouble lining up my eyes with the smaller eye lenses on my pocket binos, so I never see this as being much of an issue.

Enjoying the rich colours of autumn on a hill walk overlooking Fintry.

All that having been said, the Trailseeker 8 x 32 is a very handy companion on my daily two-mile ramble ’round Culcreuch Castle Estate, which has some extensive wooded areas, a fast-flowing river, numerous small brooks, open fields which extend towards the surrounding hills and a small pond, where I enjoy watching the antics of a variety of water-loving avian species. The field of view is very generous at 7.8 degrees, which is quite large as most 8 x 32 binoculars go, though some models sport still larger fields in excess of 8( ~ >140m@1000m) angular degrees. The razor sharp optics on the Trailseeker has given me many wonderful views of golden autumn leaves glistening in weak November sunshine. I especially love to stand under a tree and glass the branches above me, focusing in on their wondrously complex contours. The low autumn Sun this time of year illumines the trunks of the trees in the wooded areas around the estate, highlighting the wonderful texture of the tree bark and the play of light upon the lichens and mosses that live symbiotically with it.

If time is not against me, sometimes I like to stop and focus in on a stretch of water flowing from the numerous small streams that feed into the Endrick, imaging the contours of rocks laden with fallen leaves and closing in on the foamy organic bubbles that swarm along the fast-flowing stretches. And when the Sun shines on the water, I can feast my eyes on the beautiful and intense reflections emanating from its surface. This is where glare control is paramount, as even a small amount of light leakage can ruin an otherwise compelling binocular scene.

Binoculars have come a very long way since their founding days. I find it amazing that one can acquire quality optics and durable mechanics like this at such keen prices. The Celestron Trailseeker 8 x 32 has been a very pleasant surprise, combining wonderful ergonomics with state-of-the-art optical science. I think a lot of people will enjoy it.  And now that its price has come down significantly, this is a good time to grab yourself a real bargain and enjoy the wonders of nature up close and deeply personal.

Just in case……………..

 

Thanks for reading!

 

Neil English has fallen in love with what binoculars have revealed to him, and is seriously thinking of compiling a larger portfolio of  binocular experiences for a future book-length treatise on their various applications.

 

De Fideli.

“The Valley of Vision:” a Brief Commentary.

“The Valley of Vision;” a Collection of Puritan Prayers & Devotions, Arthur Bennett(ed.)

I’m new to books of prayer. For many years, I never really saw the point of them. I mean, why would one benefit from reciting or quietly reading the prayers written down by others? Shouldn’t one earnestly seek God with one’s own words or thoughts? Wouldn’t it be the case that using the collected spiritual thoughts of others is merely cheating? It was reasoning along this line that held me back from using anything other than the Bible to seek inspirational material for an active prayer life. I”ve never really been that keen on reading the works of other Christian authors for fear that I might be led astray by false doctrines and distortions of the true message of the Gospel. Goodness knows how many books published in recent times have apparently run roughshod over the true message of hope contained in the pages of the Holy Book.

So, it was with some trepidation that I decided to bite the bullet and order a copy of a little prayer book called, The Valley of Vision, compiled by the late Reverend Arthur Bennett(1915-1994), an English Christian evangelist, who dedicated his life to shepherding a flock of fellow Christians in the various places he settled during his long and fruitful life.

A Brief Biography

Arthur was born on May 15 1915, in the South Yorkshire town of Rochester, as the First World War raged across Europe. The family had moved a few times in search of a higher standard of living, spending some time in Cudworth before finally settling in Barnsley, South Yorkshire. The son of a barber, Arthur left school at the age of 14 where he took up a job as a “lather boy” in his father’s establishment. It was around this time that Arthur joined the local Salvation Army and one day, so his biographers inform us, while he was was walking though the citadel, he heard the sound of singing and people giving praise to God in the town hall. He entered and was welcomed by the congregation. The event stirred him and that same evening he resolved to give his life to Christ.

During his late teens, Bennett joined the Church of England and travelled to London to train as an evangelist, working among the poor of the city. By the time he reached his early twenties, Arthur was assigned to a number of villages spread across East Anglia, where he would travel from place to place in a horse-drawn cart. While assigned to the village of Elmsett, Suffolk, he met the love of his life, Margarette Jones, who was also a Bible teacher, and the couple were married in Margarette’s home town at Carmarthenshire, South Wales, on August 26, 1942.  By then, Arthur had almost completed his studies at Bristol’s Clifton Theological College, shortly after which he was ordained as a minister in the Chuch of England. He accepted his first post as curate at Woodhouse, Huddersfield, where the couple remained until 1949, when he was then appointed Vicar of Christ Church, Ware, Hertfordshire. And in 1956, Bennet, his wife and five children moved to St. Paul’s Church, at St. Albans, Hertfordshire, where they lived for the next eight years.  In the mid 1960s, Bennett accepted an invitation to shepherd a few parishes in the catchment area of Ware, Hertfordshire, where he settled into 17 years of Bible teaching and preaching. After 39 years of active ministry, Bennet retired to Clapham, Bedfordshire, and after a short illness passed away in 1994, where he was laid to rest in the Churchyard of Little Munden, Hertfordshire. His wife, Margarette, survived him a few more years before breathing her last in 1997.

Interest Piqued in Puritan Spirituality

From his early youth, Bennett cultivated a keen interest in Church history, and in particular, the early Puritan movement, which began as an ecclesia within the Church of England in the late 16th century. Bennett was drawn to the simple spirituality of Puritan thinking, studying the available archives of their literature which had done much to disseminate the Good News far beyond the shores of England, but especially so in Colonial North America. Drawing on his diligent studies conducted throughout his career, Bennett set himself the task of compiling a collection of prayers from the founding fathers of Puritan spirituality, dating from the closing years of the 16th century right up to the late 19th century. Although he authored several important books on similar themes, Arthur Bennett is best known for his little book of Puritan prayer, The Valley of Vision, which was first published in 1975 by The Banner of Truth Trust.

At first sales of the work were slow, culminating with about 20,000 copies of The Valley Of Vision sold by the time Bennett passed away in 1994, but in the time since, the estimated number of copies of the work in the hands of Christians rose rapidly to over 350,000 copies distrubted around the world.  I have a strong preference for the printed word. My copy is the small, bonded leather edition representing the 18th re-print as of 2018 (405 pages, £19 UK) You can also get a sense of the kind of spiritual exercises in the book by having a look at the first 14 pages which is presented in PDF format here.

Contributors & Content

As explained in the preface to the work, Bennett drew on an eclectic mix of prayers and devotions of some of the more prominent members of the Puritan movement dating mostly from the 16th through 18th centuries, which include:

  • Thomas Shepard (1605-1649)
  • Richard Baxter (1615-1691)
  • Thomas Watson (c. 1620-1686)
  • John Bunyan (1628-1688)
  • Isaac Watts(1674-1748)

 

  • Philip Doddridge (1702-1751)
  • William Romaine (1714-1795)
  • William Williams [of Pontycelyn] (1717-1791)
  • David Brainerd (1718-1747)
  • Augustus Toplady (1740-1778)                                                                                                                                                                                                                              It also includes a small number of prayers composed by those attracted to Puritan spirituality in the 19th century including:
  • Christmas Evans (1766-1838)
  • William Jay (1769-1853)
  • Henry Law (1797-1884)
  • Charles Haddon Spurgeon (1834-1892), widely considered to be the last of the great Puritans.

 

The opening prayer, called The Valley Of Vision, was written by Bennett himself, the title of which was inspired by a reading of Isaiah 22( KJV emphasis);

Lord, high and holy, meek and lowly,

Thou hast brought me to the valley of vision,

where I live in the depths but see thee in the heights;

hemmed in by mountains of sin I behold thy glory.

Let me learn by paradox

that the way down is the way up,

that to be low is to be high,

that the broken heart is the healed heart,

that the contrite spirit is the rejoicing spirit,

that the repenting soul is the victorious soul,

that to have nothing is to possess all,

that to bear the cross is to wear the crown,

that to give is to receive,

that the valley is the place of vision.

Lord, in the daytime stars can be seen from deepest wells,

and the deeper the wells the brighter thy stars shine;

Let me find thy light in my darkness,

thy life in my death,

thy joy in my sorrow,

thy grace in my sin,

thy riches in my poverty

thy glory in my valley.

All of the prayers derived from the Puritan writers are approximately the same length as Bennett’s opening devotion, and for convenience are divided up into very useful sub-sections so that the reader can concentrate on different themes, which include:

1. Father, Son and Holy Spirit

2. Redemption and Reconcilaition

3. Penitance and Deprecation

4. Needs and Devotions

5. Holy Aspirations

6. Approach to God

7.Gifts of Grace

8. Service and Ministry

9. Valediction

10. A Week’s Shared Prayers

Even a cursory reading of the book will show that all the Puritan authors were deeply committed to the Scriptures, with no turning to the right or to the left, as it were. These were holy men, who considered all of creation sacred, and who poured out their innermost thoughts to their Creator, witholding nothing. In my mind’s eye, I see those prayers billowing upwards, headlong toward the mercy seat of God, where the Scriptures inform us that they are collected in vials(Revelation 5:8).

In all, some 196 prayers are presented, but Bennett does not reveal the individual authors of those prayers.

I have many favourites to draw on. Here’s an excerpt from Section I; Father Son and Holy Spirit; from a prayer entitled: Man’s Great End:

Lord of All Being,

There is one thing that deserves my greatest care,

that calls forth my ardent desires,

That is, that I may answer the great end for which I am made-

to glorify thee who hast given me being,

and to do all the good I can for my fellow men;

Verily, life is not worth having

if it be not improved for this noble purpose.

Yet, Lord, how little is this the thought of Mankind!

Most men seem to live for themselves,

without much or any regard for thy glory,

or for the good of others;

They earnestly desire and eagerly pursue

the riches, honours, pleasures of this life,

as if they supposed that wealth, greatness, merriment,

could make their immortal souls happy;

But alas, what false delusive dreams are these!

pp 22

Some of the prayers brought an instant smile to my face. How about this opener(under Sins) for efficiency?

Merciful Lord,

Pardon all my sins of this day, week, year,

all the sins of my life,

sins of early, middle, and advanced years,

of omission and commission….. pp 158

 

Say no more eh? That’s right! Our God forgives all sins; past, present and future.

Others are altogether more sonorous. Take this excerpt, taken from a prayer entitled, Union with Christ;

O Father,

Thou hast made man for the glory of thyself,

and when not an instrument of that glory,

he is a thing of nought;

No sin is greater than the sin of unbelief,

for if union with Christ is the greatest good,

unbelief is the greatest sin.. pp 36

Unbelief is portrayed as sin, and not only that; it is ” the greatest sin.” And where might one find support for that position in the Scriptures? Well, for a start, how about the tract from Hebrews:

But without faith it is impossible to please him: for he that cometh to God must believe that he is, and that he is a rewarder of them that diligently seek him.

Hebrews 11:6

Unbelief is rebellion, anarchy of the heart, a conscious decision to reject the authority of our Creator over our lives. Hebrews 3 reminds us:

Take heed, brethren, lest there be in any of you an evil heart of unbelief, in departing from the living God.  But exhort one another daily, while it is called To day; lest any of you be hardened through the deceitfulness of sin.  For we are made partakers of Christ, if we hold the beginning of our confidence stedfast unto the end;  while it is said, To day if ye will hear his voice, harden not your hearts, as in the provocation.  For some, when they had heard, did provoke: howbeit not all that came out of Egypt by Moses.  But with whom was he grieved forty years? was it not with them that had sinned, whose carcases fell in the wilderness? And to whom sware he that they should not enter into his rest, but to them that believed not?  So we see that they could not enter in because of unbelief.

Hebrews 3:12-19

So, simply put, those without faith will not enter His rest.

So much for Universalism!

The bonded leather edition is printed on high quality paper with little bleed-through. The pages have a lovely gold gilding and a single black ribbon marker. Each prayer only takes just a couple of minutes to read.

There are many eclectic topics discussed in the prayers chosen by Bennett. One prayer I especially liked is found in the Service and Ministry section and gives thanks to the Lord for giving us His precious Word. Called the Minister’s Bible, here’s an excerpt:

O God of Truth,

I thank thee for the holy Scriptures,

their precepts, promises, directions, light,

In them do I learn more of Christ,

be enabled to retain his truth,

and have grace to follow it.

Help me to lift up the gates of my soul that he may come in

and show me himself when I search the Scriptures,

for I have no lines to fathom its depths,

no wings to soar to its heights.

By his aid may I be enabled to explore all its truths,

love them with all my heart,

embrace them with all my power, engraft them into my life. pp 346

In this ephemeral world we live in, with its endless distractions and technological marvels, reading the Bible every day has become as important to me as eating, exercising and washing. It has become a constant comfort to read and re-read in the quiet of the morning and in the evening; to meditate on its precepts and absorb its spiritual wisdom that is older than nature herself.

Many of the Puritan authors demonstrate an acute awareness of sin, and the utter inadequacy of trying to achieve salvation by one’s own efforts(Ephesians 2:8-9). You can sense a great desire of many of the contributors to go home, to be eternally re-united with their Creator in Paradise.  In the Valediction section, for example, we read this prayer, entitled Earth And Heaven;

O Lord,

I live here as a fish in a vessel of water,

only enough to keep me alive,

but in heaven I shall swim in the ocean.

Here I have a little air in me to keep me breathing,

but there I shall have sweet and fresh gales;

Here I have a beam of sun to lighten my darkness,

a warm ray to keep me from freezing;

yonder I shall live in light and warmth forever.

My natural desires are corrupt and misguided,

and it is thy mercy to destroy them;

My spiritual longings are of thy planting,

and thou wilt water and increase them;

Quicken my hunger and thirst after the realm above  pp 370

 

The Valley of Vision is a great resource for those who have committed themselves to a Christian path through this present evil age. Every day, we edge closer to our eternal home(Hebrews 13:14), where we will serve the Lord with purity of heart.  And though I was sceptical about whether any prayer book would do anything to enrich my prayer life, I must admit to have been badly mistaken. There is so much richness in the pages of this little classic prayer book, treasures that can transform the inner groanings of the soul into beautiful, deep and expressive worship.

And that’s why I would unhesitatingly recommend it to the faithful.

Natural companions.

 

Thanks for reading!

 

 

De Fideli.

On the Campaign Trail: Again!

Image result for Roman battle Gladiator images

I decided to go on campaign again over the weekend of October 26/27 2019. This time it was in response to a provocatively titled post by a guy I helped secure a book contract for some time ago. The thread in question was entitled,  Evolution tells us we might be the only intelligent life in the universe.

While I agreed with the conclusion, I took issue with the mechanism, or rather the lack of a mechanism implied by the poster; Darwinian evolution. I responded by posting a number of links to the conclusions drawn from an expert in the fossil record, Dr. Gunter Bechly, who defected from neo-Darwinism to join the intelligent design movement, based on the enormous body of new evidence that shows no intelligible Darwinian progression. Despite this data being freely available for over a year now, the poster seemed to reveal a complete ignorance of the true status of this failed ideology masquerading as science.

I reinforced Bechly’s talk with a number of other short, supplementary links, explaining in simple terms, how neo-Darwinism has now been disproven and is no longer tenable as an explanation for the origin of biological systems:

How has Neodarwinism been disproven?

What is the waiting time dilemma and how does it refute Neodarwinian evolution?

How does the evolution of whales present a challenge to Neodarwinism?

Most of the earlier posters digressed into discussions more along these lines than anything else; wishy-washy New Age dribble.

As expected, the exchanges garnered a substantial number of viewers, growing from about 800 to ~1600 hits in the space of 24 hours. Like I explained in earlier campaigns, folk have a bizarre attraction to conflict. They just can’t help themselves it seems! I got the usual emotive and hostile response from predatory trolls, who hurled abuse at me, but never discussed the factual content of those links. One person responded positively in my defence, but stated that he was neither religious(nor am I for that matter, as Christianity is not a religion but a relationship) nor an endorser of intelligent design. That’s all well and good, but he couldn’t proffer an alternative naturalistic explanation. My question to that person is: if it’s not Darwinian evolution, how does one best explain the 18+ big bangs that have occurred throughout the long history of life?
I believe that the answer is that new information from an outside source was required to bring about those changes in the fossil record. And that information provider was the God of the Bible.
The same chap who came to my defence asked why I believe humanity is alone in the cosmos? Why wouldn’t an intelligent designer like the Lord God Almighty not create other civilizations? Some of my reasoning comes from the general observation that every where(apart from Earth) we look in the cosmos, conditions appear to be hostile toward life. I provided those scientific details in my debut feature article for Salvo Magazine Volume 50(fall 2019 issue). Although I was not at liberty to discuss the theological reasoning behind my conclusions on such a forum, I think one reason is grounded in a kind of pagan idolatory. I see these mythical advanced civilizations as a distraction from our true duty to look out for and help one another and to responsibly steward all other life on this jewel planet we live on. Like I said before, the only aliens we are ever going to meet are our neighbours!  This talk by Dr. John Barnett fleshes out still more theological reasons why I do not believe in the existence of ETI.
In summary, I view this latest online campaign against general scientific ignorance as a success. It is my fondest hope that some people who read that thread will come to a knowledge of the truth.
Sincerely,
Neil English PhD.
Postscriptum: Once again, I got physically sick(I threw up) after the thread linked to above was locked.The same thing happened in the aftermath of my last campaign.

 

 

Return to Wigtown: October 2019.

The driveway up to East Kirkland Farm, Wigtown.

Our annual family October vacation almost never happened this year. Our car gave up the ghost, necessitating the purchase of a new one just a week before our planned trip, and then, to add insult to injury, our fan oven died, requiring us to pay out still more cash to get it replaced. Luckily, I had just received an advance on my new book, as well as my first pay cheque for my debut feature-length article in Salvo Magazine, outlining the scientific case against extraterrestrial life.  Unfortunately, the holiday cottages at East Kirkland Farm were almost fully booked by the time we made our enquiries, and all the proprietors could offer us was a few days, starting on Wednesday October 16 until the end of the week. Trying to salvage some quality time away, we jumped at the chance and decided to go for it!

This was our fourth trip down to Wigtown, located at the very southwest tip of Scotland. As I have documented in previous blogs, I have enjoyed some beautiful, pristine skies here in the past, using a variety of hand-held binoculars and telescopes . What I mainly wish to report here is one night of observations, which took place at East Kirkland on Wednesday, October 16 2019.

I took along my trusty, high-performance 130mm F/5 travel Newtonian reflector in its padded aluminium case and my new pocket binocular; a Zeiss Terra ED pocket 8 x 25mm, for daylight observations of the landscape. I elected not to take my larger binoculars as there was a bright, nearly full Moon in the sky, which would rise early in the evening making observations with larger binoculars almost impossible to conduct. No, I would be using the Newtonian to carry out some observations of a suite of double stars, both easy and some more challenging, as these are largely unaffected by the presence of a bright Moon.

Two wonderful travelling companions.

After driving through an active weather system in the morning, the skies cleared as we approached Wigtown and the afternoon turned out to be sunny and reasonably warm, with only a few clouds in the sky.  After unpacking, I set up the 130mm on my old Vixen Porta II alt-azimuth mount in the shade of a garden tree where I was able to enjoy wonderful, ultra-high-powered views of the hinterland. As I expained in previous blogs, this little Newtonian is an excellent spotting ‘scope, possessing  superior light grasp and constrast that easily exceeds the performance of conventional spotting ‘scopes that often cost considerably more. This is especially apparent in low light conditions that are all too common during the shorter days of late autumn and winter.  Alas, I didn’t bring along my Vixen erecting lens but I didn’t really need it. I just drank up the views at 118x of tree trunks and branches, golden autumn leaves and bramble bushes, still drenched by the rainfall that occurred that same morning,  just a few tens of yards away in the distance. Indeed, of all the kinds of optical equipment now availalble to the nature lover, conventional spotting ‘scopes make little sense to me. Why fork out so much for an instrument that is severely limited by its small (70-100mm) aperture?

Plotina, my wonderful 130mm f/5 travel Newtonian delivering some ultra-high powers of the terrestrial creation on the afternoon of October 16, 2019.

The evening remained largely cloud free but I knew that a nearly full Moon would be rising early in the east, at about 7.30pm local time. Conditions were quite different to the other occasions I have observed here in past journeys. This time, there was hardly any wind all day and the evening brought some high altitude cirrus cloud and lower altitude cumulus that came and went as the evening dragged on. Still, a quick look at Delta Cygni showed that conditions were, once again, excellent(Ant I-II). The faint companion was steadily seen and observed at 354x (Meade Series 5000 UWA coupled to a 3x Meade achromatic Barlow). The Airy disks were tiny and round with a single, delicate diffraction ring surrounding the bright primary.

Moonrise over Wigtown, as captured at 20:58 h on Wednesday October 16, 2019.

During our summer trip to Pembrokeshire, South Wales, I forgot to bring my flexi-dew shield, which forced me to adopt a totally different strategy while observing. Thankfully, the dew shield came with me this time and it proved indispensable as these calm conditions would bring a heavy dew.

I really got stuck in after supper, just after 8pm local time, visiting a suite of favourite double and multiple stars witth Plotina. Albireo in Cygnus was mesmerizing with lovely calm Airy disks displaying their true colours(the reflector afterall is a true achromatic telescope) in the telescope at 118x. Moving over to Mu Cygni, I cranked up the power to 354x to cleanly resolve the two close companions and a bright field star wide away. Moving into Lyra, I got a text-book perfect split of the four components of Epsilon 1 & 2 Lyrae at 118x but an altogether more satisfying split at 270x (4.8 mm T1 Nagler coupled to a 2x Orion Shorty Barlow) . And to give the reader an idea of how good the skies were here at this time, I was able to cleanly split Epsilon Bootis at 118x and 135x, even though it was very low in the western sky at the time of observation!

Moving to the southwest sky, I turned the little Newtonian on Pi Aquliae and was rewarded by a very crisp splitting of this near-equal brightness pair at 354x. I then moved the telescope on Polaris, the pole star and enjoyed a lovely calm view of its very faint companion at 118x. The same was true of Mizar & Alcor, which  presented a downright dazzling light show in the telescope at 118x.

By 9pm, Cassiopeia was well positioned high in the sky and I turned the telescope to another system, that up to relatively recently was considered tricky by dyed in the wool refractor nuts. I speak of course of Iota Cassiopeiae, which was easily resolved into its three components at 118x. The view was far more compelling at 354x though! From there, I panned the telescope across to Eta Cassiopeiae, where the telescope presented a beautiful, ruddy primary and yellow secondary some three magnitudes fainter(magnitude +7.5)

At about 9.30pm local time, I turned the telescope on another autumn favourite; Almach; which presented gloriously with its orange and bluish components in the Newtonian at 118x and 354x. Finally, I tracked down another very close system, 36 Andromedae, a 1.0″ near equal brightness pair. Centring it in the field of view using the slow motion controls on the Vixen Porta II mount, I cranked up the power to 354x to behold a wonderful sight; two tiny Airy disks with a sliver of dark sky between the components! Reaching for the 4.8mm Nagler, and coupling it to my 3x achromatic Barlow lens, the power was increased to 405x, where I was still able to stably hold both components as they raced across the field of view from east to west.

Some folk might form the erroneous view that these conditions must be rare in the British Isles, but I have conclusively de-bunked that opinion(promulgated by lazy, arm-chair amateurs unwilling to do any field work of this nature). There are, in fact, many places in Britain and Ireland which give the same kind of excellent performance with this little Newtonian reflector. So, it has nothing to do with sheer dumb luck, but all to do with diligent enquiry!

The next day, October 17, proved a washout, unfortunately. Frequent heavy showers of rain put a severe dampener on the vacation and these showers persisted right into the early and late evening, so I didn’t bother to use the telescope. That said, I have one additional memorable observation to report during the wee small hours of October 18. Sticking my head out of doors at 1.20 am local time showed a bright waxing Gibbous Moon skirting very close to the bright star, Aldebaran. Reaching for my little Zeiss Terra pocket binocular showed me a most arresting sight! The Moon was just a few degrees directly east of the horns of Taurus, looking for all the world as if it were about to lock horns with the celestial bull. I watched in sheer amazement as some clouds blew across the Moon from west to east, blotting out some of the glory of the stars of the Hyades, but in the process, creating a wonderful display of light and colour, as the low-altitude rain clouds approached and then receded from our bright, natural satellite. I only wished I had brought along my 8 x 42 Savannah binocular to capture still brighter images of this marvellous apparition, but hindsight is indeed a wonderful thing!

It would have been nice to have another night to accumulate more data at this site but it was not to be. Still, it was good to get away, if only for a few days.

A capital grab ‘n’ go telescope. Powered by human muscle, eyes and brains.

I would continue to encourage others who have a small Newtonian telescope like this to perform their own field tests on these and other double stars. I mean, it’s all very easy to falsify, isn’t it? You just need to collimate accurately and allow enough time for the telescope to acclimate fully to the outside air. That said, If time is against you,  it’s best to start with the easiest pairs and move onto the tighter ones as the telescope nears full equilibration.

Good luck with your adventures!

Neil English is the author of seven  books. His largest work, Chronicling the Golden Age of Astronomy, provides a historical overview of many astronomers from yesteryear who used Newtonian reflectors productively in their exploration of the heavens.

 

De Fideli.

What I’m Reading.

“Escaping the Beginning? Confronting Challenges to the Universe’s Origin.

Did the universe have a beginning—or has it existed forever?

If the universe began to exist, then the implications are profound. Perhaps that’s why some insist it has existed forever.

In Escaping the Beginning?, astrophysicist and Christian apologist Jeff Zweerink thoughtfully examines the most prevalent eternal-universe theories—quantum gravity, the steady state model, the oscillating universe, and the increasingly popular multiverse. Using a clear and concise approach informed by the latest discoveries, Zweerink investigates the scientific viability of each theory, addresses common questions about them, and then focuses on perhaps the most pressing question for believers and skeptics alike: If the evidence continues to affirm the beginning, what does that imply about the existence of a Beginner?

About the Author: Jeff Zweerink (PhD, Iowa State University) is an astrophysicist specializing in gamma-ray astrophysics. He serves as a senior research scholar at Reasons to Believe and as a part-time project scientist at UCLA. He has coauthored more than 30 papers in peer-reviewed journals and numerous conference proceedings.

 

Some Reviews Thus Far Garnered:

“In Escaping the Beginning? Jeff Zweerink leads the reader through a fascinating tour of the scientific development of the big bang theory as well as the theological and philosophical implications of the beginning of our universe. More importantly, he addresses some of the recent speculations by scientists that attempt to circumvent both a beginning and a Beginner and shows that the best current scientific evidence continues to point to an actual beginning of our universe. The hypothesis that the universe came into existence through the actions of a transcendent intelligent Creator is still arguably the explanation that best fits the scientific data.”

—Michael G. Strauss, PhD
David Ross Boyd Professor of Physics
University of Oklahoma

 

“As an atheist detective investigating the existence of God, I hoped the evidence would reveal an eternal universe without a beginning because I knew the alternative would be hard to explain from my atheistic worldview. . . . Escaping the Beginning? examines the evidence for the universe’s beginning and the many ways scientists have tried to understand and explain the data. I wish I had his important book when I first examined the evidence. If I had, I would probably have become a believer much sooner.”

—J. Warner Wallace
Dateline-featured Cold-Case Detective
Author of God’s Crime Scene

“There are few books I read twice. but this is one of them. Although understanding this book will take effort  for anyone untrained in the sceinces, the effort is well worth it. Dr. Zweerink answered many of my questions about the existence of the multiverse, evidence for the beginning of the universe, and problems for common challenges to divine creation. . . . Escaping the Beginning? deserves wide readership by believers and skeptics alike.”

–Sean McDowell, PhD, Author of Evidence that Demands a Verdict

 

“Jeff Zweerink has done something I might have thought to be impossible. He has made cosmology accessible to scientific laypersons like me. Whether it’s quantum fluctuations, inflation theory, or the various models of the multiverse, Zweerink explains things clearly and with good humor. Even more importantly, he shows that the findings of modern cosmology give Christians even more reason to worship and adore our great God who created all things.”

-Kenneth Keathley

Senior Professor of Theology, Southern Baptist Theological Seminary.

“Does the universe have a beginning, or has the physical realm existed forever? This is an ancient question and still hotly debated today. The interest in the subject is not just from its obvious scientific significance, but also from its religious implications. Since the first cosmological and theoretical evidence for a universe with a distinct beginning was discovered a century ago, some of the most intense opposition among scientists to the notion of a beginning has been primarily on religious grounds. In this engaging book, Jeff Zweerink reviews the state of the theory and experiment, and argues that far from having been escaped, a bginning to the universe is the likely outcome of the current lines of research.”

-Bijan Nemati

Principal Research Scientist, University of Alabama in Huntsville.

“Did the universe have a beginning? If so, what would that imply? Does the origin require an Originator? Does a creation imply a Creator? What would that mean for our lives?

Paul Valery once said, “What is simple is wrong, and what is complex cannot be understood.” Dr. Zweerink splits the horns of this dilemma by raising many of the issues surrounding a cosmological beginning in an enjoyable  and accessible format for a general audience. yet this is done without sacrificing the critical details that attend the state-of-the-art.

He draws on his training and expereince as an astrophysicist to unpack the history of the big bang, its blossoming into the universe around us, and otther topics of fascination, interest, and wonder. Dr. Zweerink then goes to the heart of contemporary cosmology to find out what today’s cosmologists – our secular priests -are saying about cosmic origins.

While I might believe the scientific case for a beginning and a Creator is a bit stronger than Jeff does, his grasp of the issues and presentation style will serve his audience well.”

-James Sinclair

Senior Physicist, United States Navy.

 

“I had the privilege of debating Jeff Zweerink on two occasions. As an atheist, I was surprised to see how much common ground there was between us. And that is because Jeff is an incredibly honest and thoughtful person and his writing reflects that. Escaping the Beginning? is a well-written and carefully researched work that doesn’t shy away from challenges to cherished belief and deserves to be widely read by the community. It does what a good book should do—educate and (I hope) stimulate thoughtful debate.”

—Skydivephil
Popular YouTuber and Producer of the Before the Big Bang Series
Featuring Exclusive Interviews with Stephen Hawking, Sir Roger Penrose,
Alan Guth, and Other Leading Cosmologists

 

De Fideli.

 

Product Review: Zeiss Terra ED 8 x 25 Pocket Binocular.

The Zeiss Terra ED 8 x 25: a noble gesture from a market-leading optics firm.

October 1 2019

Preamble;

Review A

Review B

 Review C(verified purchaser):

Although I read glowing reports for these pocket Zeiss Terra ED 8×25 light carry binoculars, my previous 4 month ownership of the Swaro CL 8X25 pockets had tempered my expectations. However, I found these small glassing gems to perform optically and ergonomically within 95% of the venerable and well built CL’s (at 1\3 the price)! They, just as the CL, have handling and comfort limitations compared to compact or full size binoculars. But for quick trip non-intrusive viewing, ease of portability and very accurate powered views, these little pockets are hard to beat. Overall, they possess very nice ergonomics, have natural color presentation, crystalline resolution that is real sharp and bright, with very good contrast views. Their FOV (field of view), whose sweet spot extends to within 10% of their wide 357ft limit, has a comfortable and stereoptic DOF (depth of field) . Hinge tensions are perfect, and the focuser is fast, going from close focus (mine’s about 5ft) CW to infinity in just 1.25 turns. Eye cup adjustments lock fully in (for eye glass wearers) and fully out (non-eye glass wearers). My vision is 20\15 and with the very comfortable eye cups fully extended and resting on my brow, I can align the small EP (exit pupil=3.1) with my pupils, gaining a full unobstructed sigh picture! With its ED glass, CA (chromatic aberrations) is well controlled and I find day light\low light viewing to be bright, natural and enjoyable! Diopter is set on the front dial (for the right barrel) and has enough resistance to stay put. Made in Japan for Zeiss, they offer a lot of features and performance at a great value point. These will make great travel companions and will be back-ups for my full sized field excursion instruments!

Review D(verified purchaser):

I also read about these on an astronomy forum, where I got the “use” info below, but not the specs.
Buy these now. A best buy. Here’s why:
1. Zeiss is a world class optics company. So is Swarovski.
Compare this Zeiss Terra ED 8×25 to the world-class Swarovski 8×25 at $819 on Amazon (list price is even higher). This will show you
a) specs are same: field of view (6.8˚),
brightness (14.1 vs 14.2),
weight (11 vs 12 oz),
eye relief (16 vs 17mm), and
size in inches
b) specs favor Swaro: water resistant to 4 meters (vs 1 meter for Zeiss)
c) specs favor Zeiss: close focus 6.2ft (vs 14.2 for Swaro),
operating temperature -20 to 144˚ (vs -13 to 131 for Swaro)
d) use favors Swaro: view is said to be more comfortable to look at, ergonomically
focus has lighter touch, for those who like that
e) use favors Zeiss: view is more crisp, contrasty (Swaro view is said to be softer, more milky)
focus has firmer touch, for those who like that
f) price favors Zeiss: $293 (vs $819 for Swaro)2. Compare them to other Zeiss binos from the SAME series – Zeiss Terra ED.
– 8×25, 10×25 are made in Japan
– 8×25, 10×25 are getting great reviews, for small binos
– all larger Terra ED models are made in China
– all larger models are getting panned for poor optics and build quality
I think everybody is well aware that China optics and build quality are inferior (so far) to those from the US, Japan, Taiwan, Germany, Austria, etc.So this 8×25 model is unusual. Superior optics and build are normal for Zeiss, except for their Chinese built Terra ED line.
Luckily, the 8×25 model is made in Japan with Zeiss design. This results in typical world class Zeiss quality.What is hard to understand is how Zeiss makes a $293 optic that arguably outperforms an $819 Swarovski.For bino newbies looking at 10×25, remember: the 10×25 will have a smaller exit pupil, so your views may black out more. Also, a 10x is way harder to hold steady and actually see than an 8x. So, even though you think you want 10x, you probably really want 8×25. With the 8×25, you’ll actually see and enjoy the view more.………………………………………………………………………………………………………………………………..

What you get:

The Zeiss Terra ED 8 x 25 pocket binocular kit.

The Zeiss Terra pocket arrived double-boxed. After opening the outer packaging, the binocular kit was housed inside a very nicely presented box with a very fetching design which folds open to reveal the contents. Unlike other products I’ve received in the past, the Zeiss box has depicted on the inside, a colourful alpine scene with majestic mountain peaks soaring high above a beautiful river valley. Perhaps the team at Zeiss intended the user to explore such landscapes? Whatever the reasoning behind it, it was certainly a pleasant touch.

With Zeiss, even the packaging is premium.

Unlike customers who bought the Zeiss pocket binocular when it was first launched just a few years ago, I was relieved to see that the instrument was housed inside a small clamshell case with a magnetic latch carrying the blue & white Zeiss logo.The box also contained a lanyard, operating instructions and a lens cleaning cloth. I was surprised that the binocular itself came neither with eyepiece or objective lens caps, but I suppose they are not really necessary, as the case very effectively protects the instrument from dust and moisture.

The box has the serial number on the side, which is needed to register the product on the Zeiss sports optics website.  On another side of the box, the detailed specifications of both the 8 x 25 and 10 x 25 models are presented; another nice touch.

The binocular was housed inside the clamshell and was pristine, with no dust on the lenses, or gunk on the interior of the barrels. From the moment I prized the neatly folded instrument from its case, I was impressed. The frame is composed of a fibre-glass like polymer, with a fetching black, grey and blue livery. The sides of the binocular have a rubberised exterior making it easy to grip well while in use. The double-hinges were rigid and hold their positions solidly once the correct inter-pupillary distance is chosen for your eyes. The optics are hermetically sealed, nitrogen purged and had immaculately finished anti-reflection coatings on both the ocular and objective lenses. They are also treated with a Zeiss’ proprietary hydrophobic coating that encourages any moisture and grime that gathers on the lenses to fall off, rather than accumulating on the surfaces. The instrument is guaranteed to operate flawlessly over a very impressive temperature range: -20C to +63C, so covering almost any environment it is likely to find itself in.

The binocular is water resistant, but to what degree remained a bit of a mystery owing to the rather odd way in which Zeiss chose to present it: 100mbar.

You what mate?

Thankfully, some physics knowledge helps to clarify the reference to water pressure.

P = Rho x g x h, where P is the water pressure, Rho is the density of water, g is the acceleration due to gravity and h is the depth in metres. Rearranging to find h gives;

h = P/ (g x Rho) = 10^4/ (10 x 10^3) = 1m

Knowledge is power lol!

So, not as waterproof as a Swarovski pocket binocular(I think it’s 4m) but adequate for most purposes.

Fully folded down, the Zeiss Terra pocket is about 70mm wide and 110mm long. The oversized barrels make the Zeiss a wee bit taller when placed on its side in comparison to a classic pocket instrument, like my lovely little Opticron Aspheric LE;

The Zeiss Terra Pocket(right) is a little wider and taller than the more conventional Opticron Aspheric(left).

The Terra weighs in at 310g, so about 40 grams lighter than the Swarovski-made counterpart. Lighter isn’t necessarily better however, as some individuals find holding such light glasses problematical. But once unfolded, the significantly wider barrels more than make up for its low mass, as I shall explain more fully a little later in the review.

The eyecups look a bit suspect, but once you begin rotating them, they work really well. They have no indents but do have ample friction. There are only two positions; fully retracted or fully extended. You know you’ve reached either situation by hearing their clicking into place. They are very solid and hold their positions superbly. Eye relief is 16mm and I was able to enjoy the full field with eye glasses on or without. Placing your eye on the eyecups is very comfortable, with their soft, rubberised overcoat and the large field lenses makes for very easy centring of your eye sockets along the line of sight of the optical train.

The dioptre(+/- 3) setting lies at the other end of the bridge(near the objectives), which initially presented some problems for me, as it is rather stiff and difficult to get going, but once you’re done you’re done! The focusing wheel is centrally located and is reassuringly large and easy to grip, even with gloves on. It moves very well, with the perfect amount of tension. Motions run smoothly, with little in the way of play or backlash when rotated either clockwise or anti-clockwise. The focuser requires one and a half full rotations to go from one end of its focus travel to another.

The Zeiss Terra ED 8 x 25 has a large, centrally placed focuser. The right-eye dioptre ring is located at the other end of the instrument, near the objective lenses.

The objective lenses are very deeply recessed, more so than on many other pocket binoculars I’ve used. This affords the 25mm objective lenses greater protection against aeolian-borne dust and also serves as a first-line defence against glare. Cool!

As the other reviewers showcased earlier, the Zeiss Terra pocket binoculars are manufactured in Japan, with the larger models originating in China under Zeiss supervision. You can see that quite clearly by examining the under belly of the instrument:

The underside of the binocular reveals its country of manufacture: Japan.

That said, and contrary to what the other reviewers have asserted, I don’t fully subscribe to the notion that all Chinese-made binoculars are inferior to those produced in Europe or Japan, as I shall elaborate on later.

All in all, it’s pretty obvious that a great deal of sound engineering was put into these pint-sized field glasses.

Handling: The Zeiss pocket is supremely comfortable to use, the slightly larger frame fitting comfortably in my hands. Indeed, with its wide field of view and thicker barrels, it feels like you’re peering through a larger instrument. The big eye lenses make it easy to get the right eye placement with none of the blackouts I’ve experienced on a number of other pocket binoculars. Its light weight means that you can carry it round your neck for hours on end with no neck strain. Its easy to get both hands resting on the central bridge, using my little finger to engage with the focus wheel.

Optical Assessment:

Straight out of its case, the Zeiss Terra impressed. Looking at some tree trunks just beyond my back garden fence reaveled a wealth of high contrast detail. I was immediately taken aback with the expansive field of view; not only was it wide, but the image remained tack sharp across nearly all of the field. Images snapped to a very sharp focus and I experienced no trouble focusing from just a few yards away all the way out to some trees located hundreds of yards away. Glare suppression looked excellent, even when pointed at some backlit scenes strongly bathed in sunlight. It was immediately clear to me that I was looking through a very high quality optical instrument.

As I stated in earlier blogs, I don’t really consider the inclusion of low dispersion (ED) glass as necessary in a small binocular like this, but it’s a nice feature when presented as part of a larger, properly designed system. After all, and as several other reviewers pointed out, the Zeiss seemed quite comparable to arguably the most sought-after pocket binocular on the market; the venerable Swarovski CL pocket binocular. But what is not widely communicated is that the latter achieves all its optical excellence without using ED glass. That should send a powerful message to the gayponaut propagandists. No, its all about using great glass, great coatings and solid mechanical engineering. Alas, I was not able to compare this pocket binocular with the Swarovski, but the fact that the little Zeiss was often mentioned in the same company as it speaks volumes about its optical quality.

Further daylight tests showed that off-axis aberrations were very well controlled. Even at the edge of the field pin cushion distortion and field curvature were minimal. Looking straight up at a denuded tree branch against an overcast sky showed no colour fringing on axis but as the image was moved off axis, some slight secondary spectrum was noted. Overall, I was very impressed at the Zeiss’ optical quality; it really does exactly what it says on the tin!

A niggly moment: While the little Zeiss pocket binocular fits perfectly inside its small, clamshell case without the supplied neck strap attached, I found that the addition of the strap made it very difficult to get a snug fit. Wrapping the neck strap around the central bridge simply didn’t allow the case to close properly(the magnetic latch never stuck), but after several attempts experimenting with different approaches, I finally hit on a way to get the binocular with its strap on to fit the case. The trick involves wrapping the strap tightly around the ocular lenses.The latch sticks.  Problem solved!

More discriminating optical tests:

Flare & Glare assessment:

Even if the glass used in binoculars were mined from the asteroid belt, it counts for nothing if it can’t control light leaks. My initial daylight tests showed that glare and internal reflections were very well controlled in the little Zeiss binocular, but they can’t tell the whole story. So, I set up my iphone torch at its brightest setting in my living room and examined the focused images through  the Zeiss Terra, comparing its results with my Opticron Aspheric(a nice little performer) as well as my control binocular; the Barr & Stroud 8 x 42 Savannah, which has excellent control of stray light.

The results were very interesting. The Zeiss faired better than the Opticron, but not by much. However, it was not as good as the Savannah, which exhibits exceptional control of internal reflections even though it collects far more light than any pocket binocular.

Further testing of the binoculars on a bright street light revealed some additional information. Internal reflections were well suppressed in both the Zeiss and Opticron binoculars, but the Zeiss showed more prominent diffraction spikes. The Savannah control binocular, in comparison, proved superior to both pocket binoculars. It shows very little flaring and internal reflections and much better control of diffraction spikes.

And therein lies an instructive lesson. The Barr & Stroud Savannah 8 x 42 is fabricated in China yet shows exceptional control of glare and internal reflections. So, it’s not so much where a binocular is built that counts so much as how it is constructed.

An exceptional, Chinese-made binocular; the Barr & Stroud 8 x 42 Savannah wide angle 143m@1000m.

It is all the more remarkable, since the Savannah can be purchased for half the price of the diminutive Zeiss!

All in all, these tests showed that the Zeiss binocular is very well protected against stray light, glare and internal reflections and this goes a long way to explaining why the views through it are so compelling.

Collimation and Field of View Tests:

I checked the collimation of the barrels on the Zeiss by placing the instrument on a tall fence and aiming at a rooftop, checking that both the horizontal and vertical fields correlated with each other. They matched up very well.

Field of view is best assessed by turning the binocular on the stars. Accordingly, I aimed the Zeiss Terra at the two stars at the end of the handle of the Ploughshare, now low in the northern sky. The Zeiss was able to image both Mizar and Alkaid in the same field with a little bit to spare. These stars are separated by an angular distance of 6 degrees 40′ (or 6.66 degrees). This result was consistent with the specifications on the inside of the box; 6.8 angular degrees.

Further Observations:

Comparing the Opticron Aspheric to the Zeiss Terra in daylight, showed that both instruments were about equally matched in terms of sharpness( the aspherical oculars on the Opticron certainly help in this regard), but I could discern that the image was that little bit brighter in the Zeiss. Better coatings in the Zeiss binocular throughout the optical train give it the edge in this regard. Field of view was also much more expansive in the Zeiss( the Opticron has a true field of 5.2 degrees in comparison). Colours were also that little bit more vivid in the Zeiss pocket binocular, caused perhaps by its better contrast and superior control of chromatic aberration.

Close focus is very good. I measured the Zeiss Terra to have a minimum close focus distance of 1.4 metres, so this should be a great little instrument for use as a long distance microscope, to spy out insects, fungi, flowers, rocks and the endlessly fascinating complexities of tree trunks.

The eye lenses on the Zeiss Terra pocket binocular measure 18mm in diameter, the same as the Swarovski CL pocket. But they are still small in comparison to a larger format binocular like my 8 x 42.

But while the field of view is quite immersive in the Zeiss Terra, it lacks the majesty factor of a larger binocular, such as my Barr & Stroud 8 x 42 Savannah, with its whopping 8.2 degree true field and better eye relief. Larger binoculars are simply easier to engage with your eye sockets and are thus more comfortable to use than any pocket binocular on the market.

Performance under low light conditions easily show the limitations of the small objectives on the Zeiss Terra. At dusk, the 8 x 42 was vastly superior to the Zeiss, showing much brighter images, as expected. So, as good as the Zeiss pocket binocular is, it can’t defy the laws of physics.

A Walk by the River Bank

River Endrick, near my home.

One of the best reasons to own and use a pocket binocular, is that it encourages you to go outside and explore the landscape. They’re so light weight and handy that anyone can carry one. Sometimes I use the Opticron and at other times I like using the Zeiss. Their sharp, high-contrast optics deliver wonderful images of the Creation. For me, nature is life affirming; a profound source of revelation and illumination. Like a great Cathedral, it fills me with awe and wonder. The sound of the wind whistling through the trees, the babbling brook and the noisy chirps of small tree birds form part of a symphony paying homage to the One who fashioned it all. For some, the Darwinian, materialist lie has dulled or even extinguished the sense of wonder that is innately endowed to every child. Dead to the world, believing themselves to be highly evolved animals, they pose no meaningful questions and can give no meaningful answers to life’s biggest conundrums. As you think, so you are.

But it doesn’t have to be that way!

For me, being able to explore the wet and wild places with tiny optical aids is a source of unending joy. On sunny afternoons or early in the morning, I sometimes take myself off for a walk along the banks of the River Endrick which meanders its way through the beautiful valley in which I live. Streches of shallow, fast-flowing water predominate but are also complemented by deeper pool and riffle sequences; favourite haunts of  Brown Trout, Perch and other course fish. Lanky Herons frequent these waters in search of fresh prey.  Bracken flourishes all along the river, and my pocket binocular allows me to study their shape and form in great detail. As summer gives way to autumn, their bright lorne hues transform into various shades of brown and tan. Spiders weave elaborate but deadly webs of silk with their spinnerets that sparkle and glisten in the morning sunlight, creating a wondrous decoration that I can experience up-close and personal with my long range microscope.

Towering trees soar into a blue sky by the banks of the Endrick.

Many species of tree grace the banks of the river; Ash, Silver Birch, Sycamore, Horse Chestnut and even the odd Oak. Thriving from frequent rain showers, their trunks are covered in lichens, moss and algae that reveal a wealth of intricate structure and a riot of colour that changes in accordance with the varying altitude of the Sun as it wheels across the sky. I especially delight in observing the colour of autumn leaves in bright sunlight, the ruby reds of anthocyanins and the yellow-orange hues of carotenoids. Every now and then, I watch as the fast-flowing water, dappling in weak autumn sunshine, ferries off fallen leaves, their destinies unknown. My pocket binocular shows me that every tree trunk is unique. Each tells its own story, visual scars of its past life.

On some stretches of the river bank, I can still find some late-flowering wild plants that delight the eyes with colour in unexpected ways. And as autumn continues its march towards winter, the thick brambles begin to yield their succulent fruit. What could me more pleasing and more natural than to feast on their nutritious berries?

An expected riot of autumn flowers observed along the river bank.

At some places along the river bank, there are expansive rocky stretches. And yet every stone you unturn reveals even more of God’s Creation. A scurrying earwig, a wondrously armoured wood louse or a frollicking spider.The pocket binocular brings everything into stunning clarity. And though at first glance, each stone looks more or less the same, my little pocket spyglass shows that they too are all unique. Every crevice, every colourful grain is one of a kind.

A rocky stretch along the river bank.

This tiny corner of the world is ripe for exploration, with every day that passes presenting new adventures, new wonders to delight the eye. But so is yours!

Bird Watching with the Zeiss Terra Pocket Binocular:

Can good pocket binoculars be suitable for birdwatching?

Lots of birding websites don’t recommend using pocket binoculars for birdwatching, citing their small fields of view and reduced comfort compared with larger binoculars as the most common reasons. Having used these small binoculars for a while now, I must say  that I respectfully disagree. The Opticron Aspheric has served as a good birding binocular for me, especially for quick looks at birds that visit our back garden table and the crows that nest in the conifer trees in the common ground beyond our back yard fence. Recently, a group of five magpies have taken up residence in the Rowan tree in our back yard. Each evening as darkness falls, they hunker down in the tree and don’t seem to be fazed by us turning on an outside light or noisy disturbances when it’s time to put the garbage out. During the day though, they are often seen chackering away at each other loudly(magpies don’t actually sing) as if to resolve some dispute among themselves. Further afield, there is a small pond just a few hundred yards away in the grounds of Culcreuch Castle, which attract quite a few varieties of water bird; swans, duck, water hens, heron and even the odd cormorant. Once I learned to use them properly, small binoculars like these have never presented much in the way of a problem for me.  And since the Zeiss Terra pockets have a nice wide field of 6.8 degrees, they have proven to be better suited than the Opticron in this regard because you can better track the motions of birds with a wider true field.

On the Zeiss Sports Optics website, under ‘usage’, they seem to be saying that the Terra pockets are less suitable for birding, but I wonder if this is merely a clever ploy to get folk to buy into their larger(and more expensive) models. If so, they’re lost on me. With their excellent optics and generous field of view right to the edge, they can and do serve as good birding glasses. Of course, you can only form your own opinions by actual field experience but you may discover that the little Terra is all you really need! Seen in this light, acquiring a Zeiss Terra pocket binocular can actually serve as a cost-saving measure that stops you haemorrhaging your hard-earned cash on ever bigger and more expensive models.

How About Astronomy?

A small binocular like this is not the best for exploring the night sky since its small objective lenses cannot gather enough light to really wow the observer. However, the Terra’s excellent performance both at the centre of the field and extending nearly all the way to the edges, as well as its wonderful contrast make star gazing a pleasant experience. Out here in the sticks, the sky is quite dark and rewarding, even when observed with such a small instrument. Its field of view is large enough to enjoy some of the showpieces of the sky like the Pleiades, the Hyades, and larger asterisms such as Melotte 20 in Perseus, which can be taken in with its generous field of view. Stars remain very tightly focused and pin sharp across the field. Later in the season, I look forward to exploring the winter constellation of Orion the Hunter, to seek out its magnificent nebula in his Sword Handle, as well as the many delightful clusters of stars that are framed within its borders.

On another autumnal evening, I was able to pick up the three Messier open clusters in Auriga, M34, the Messier galaxies, M81 and M82, the Andromeda Galaxy, the Double Cluster in Perseus, wide double stars like Mizar & Alcor and the Coathanger asterism in Vulpecula. Running the binocular through Cygnus and Cassiopeia will also reward dark-adapted eyes with innumerable faint stars, like fairy dust on black velvet. One delightful little project involves exploring the lovely colours of bright stars such as blue-white Vega and Sirius, creamy white Capella, brilliant white Rigel, orange Arcturus and fiery red Betelgeuse and Aldebaran.

Following the phases of the Moon can also be a rewarding and worthwhile pursuit, as the Terra’s above average glare and internal reflection control will ensure that you get nice crisp, contrasty images. Lunar eclipses can also be enjoyed. You might also like to try your hand at observing the beautiful light shows presented by clouds passing near the Moon on blustery evenings. The excellent contrast of the Terra will also allow you to see stars around the Moon which can be very arresting to observe. Capturing the bright Moon as it rises over man-made buildings will also delight the eye. Above all else, don’t let its small aperture deter you from exploring God’s wonderful creation, which fills the Universe with hope and light.

Final thoughts:

Terra: for exploring the Earth and beyond.

The Zeiss Terra ED 8 x 25 pocket binocular is a fine, high-quality optical instrument that is easy to use and transport. If taken care of, it will give you years of enjoyment where ever you wish to take it. As I said from the outset of this blog, I believe Zeiss did something very noble in bringing this little binocular to market at the price point they set. To be honest, and as others have quipped, they could well have stuck a ‘Victory’ label on it and no one would be any the wiser. Optically, Zeiss engineers have cut no corners to deliver an ergonomic, durable and optically sound instrument that will delight anyone who looks through it. I suspect that the Zeiss Terra pocket might be one of their best-selling products. It is even available on finance and buy-now-pay later schemes here in the UK, although I would strongly advise would-be buyers to save up and pay the price in full rather than incurring more debt, where you ultimately pay more. The Zeiss is expensive as small binoculars go, but I feel that it’s worth every penny, as for me at least, it has already given me countless hours of wonderful experiences. In the world of high-quality pocket binoculars, the Terra certainly stands out in a crowd. Highly recommended!

 

Thanks for reading.

 

Neil English is the author of a large medley of essays(650pages), Chronicling the Golden Age of Astronomy, which showcases the extraordinary lives of amateur and professional astronomers over four centuries of time.

Post Scriptum:

1. The Zeiss Terra has a two year warranty, which is enacted once you register the product on the Zeiss website. Cross-checking is thorough, requiring the serial number, and the name & address of the place of purchase. After checking these details, you receive a confirmatory email from the Zeiss Sports Optics team, welcoming you to the world of Zeiss.

2. The little foldable Zeiss Terra is very suitable for those adults with unusually small inter pupillary distances (closely spaced eyes) and children.

3. The overall light transmission of the Zeiss Terra ED is 88 per cent. Source here. This is exactly the same as the Swarovski CL Pocket(non-ED just in case Pepperidge farm forgets, ken ) binocular. Source here. Zeiss Victory Pocket binocular light transmission is 91%. Source here.

4. The family of magpies came back to the Rowan tree in my garden, as they always do, just before sunset. Here is a picture of four ( I think!) individuals settled in the tree branches at 20.09pm local time on the evening of October 6 2019.

Wee magpies hunkering down for the night in my Rowan tree.

5. After a week of abysmal weather, with endless cloud and rain, I finally managed to test the little Zeiss Terra pocket binocular on a very bright gibbous Moon at 10:25pm local time on the evening of October 10 2019, when it was within an hour of meridian passage. At the centre of the field, it delivered a beautiful, clean and razor sharp image with no false colour. The background sky was good and dark with little in the way of diffused light. Internal reflections were pretty much non-existent with the Moon in the centre of the field. Only when it was placed just outside the field did I detect some minor flaring. Moving the Moon to the edge of the field threw up some slight lateral colour, bluish at its southern edge, and green-yellow at its northern edge. These results were entirely consistent with my flashlight testing. This will be a useful Moon-gazing glass!

De Fideli.

Product Review: The Opticron Aspheric LE WP 8 x 25 Pocket Binocular.

A fine compact binocular at a fair price.

Tiny little pocket binoculars have grown on me.They can be supremely useful to those who value or need ultra-portability, when larger binoculars simply are unworkable. Their tiny size ensures that they can be carried in a pocket or a small pouch, where they can accompnay hikers, hunters, sports enthusiasts, bird watchers and nature lovers who delight in seeing the full glory of God’s created order. Frustrated by a lack of any credible reviews of a variety of models, I began a ‘search out and test ‘ program that would teach me to select models that offered good optical and mechanical performance, as well as good value for money.  As you may appreciate, this was far easier said than done, but in the end, I did find a model that I could trust to deliver the readies; enter the Opticron Aspheric LE WP 8x 25 binocular.

Retailing for between £120 and £130 ( ~$175 US), the little Opticron pocket binocular didn’t come cheap. But good optics and mechanics are worth having, especially if the user intends to employ the instrument on a regular basis. As I explained, I chose this model based on the performance of a first generation Opticron Aspheric that I had purchased some time ago for my wife, possessing identical optical specifications to this newer model, but without having the additional advantage of being nitrogen purged, as well as being water and fog proof. In truth, I chose the original model without much in the way of research and with very little experience of what the market offered; Opticron is a good make, trusted by many enthusiasts for delivering good optical performance at a fair price.

Opticron began trading back in 1970, founded as a small British family firm, and offering binoculars, spotting scopes and other related sports optics for the nature enthusiast. Since those founding days, Opticron has continued to innovate, where it now is a major player in this competitive market, offering well made products catering for the budgets of both novices and discerning veterans alike. And while some of their less expensive models are made in China, many of their high-end products are still assembled in Japan.

What you get.

What your cash buys you: The Opticron was purchased from Tring Astronomy Centre. It arrived double-boxed and with no evidence of damage in transit. You get the binocular with both ocular and objective covers, a high quality neoprene padded case, a comprehensive instruction manual & warranty card. The details of that all-important warranty are shown below:

Details of the warranty.

After a few days of intensive testing I was satisfied that I had received a high quality instrument and so I elected to register my binocular on the Opticron website.Owners are not obligated to register the instrument in this way however, as all that is required is proof of purchase, should any issue arise with the instrument in normal use.

Binocular Mechanics: The Optricron Aspheric LE WP 8 x 25 is a classically designed pocket binocular with a double-hinge designed allowing the instrument to fold up into a very small size that can be held in the palm of your hand. The hinges have just the right amount of tension, opening up and holding their position even if held with one hand.

The focuser is slightly larger than the first-generation model, and has better grip, allowing you to use it even while wearing gloves. The barrels and bridge of the binocular are made from aluminium, overlaid with a tough, protective rubberised armouring. Compared to the first-generation model,  the new incarnation induces more friction with your fingers, an important feature if it is to be used for extended periods of time.

The New Opticron Aspheric LE is now water and fog proof.

Initially, I found that turning the focuser to be a bit on the stiff side, but after a few days of frequent use, I became used to it. Turning the focuser either clockwise or anticlockwise showed that there was no backlash, moving smoothly in either direction. The instrument has an integrated neoprene lanyard which can be wound up around the bridge while being stored in its case. I very much like this rather understated feature, as there is no need to fiddle about attaching a strap. Out of the box, it’s ready to use!

Using the Optricon Aspheric LE WP is child’s play; just twist up the eyecups and they click into place. There are no intermediate settings. If you wear glasses, leave the eyecups down.

The twist-up eyecups have a soft rubberised overcoat which are supremely comfortable on the eyes. There are just two positions; fully down or fully up. Once twisted up, the cups lock in place and rigidly stay in place with a click. Eye relief is very generous(16mm), allowing eye glass wearers to engage with the entire field. I don’t use glasses while observing through binoculars, so I always pop the eyecups up while viewing through them. Optimal eye placement is very easy to find quickly, thanks to the large field lens, with none of the annoying blackouts I experienced on a few lesser models.

The dioptre setting is located in a sensible place; right under the right eyecup. A small and very elegantly designed protruding lever on the dioptre ring makes it very easy to rotate either clockwise or anti-clockwise. It works well and stays in place even after repeatedly removing the instrument in and out of its small carry case.

An elegant design feature; a small protruding lever under the right eyecup makes it easy to adjust the dioptre setting.

I measured the interpupillary(IPD) range to be between 32 and 75mm, ample enough to accommodate most any individual. Moreover, the well designed dual hinges on the bridge ensure that once deployed they stay in place with little or no need to micro-adjust while in use. The Opticron pocket binocular weighs in at just over 290 grams.

If the Opticron Aspheric pocket binocular were a car, it would surely be an Aston Martin.

Optical Assessment: Although this tiny binocular does not have a stalk to allow it to be mated to a monopod or tripod, I was able to assess how well collimated it was by resting the binocular on a high fence, and examining the images of a rooftop some 100 yards in the distance, checking to see that the images in the individual barrels were correlated both horizontally and vertically. This was sufficient to affirm that the binocular was indeed well collimated.

During daylight hours, the binocular delivers very bright and colour-pure images thanks to a well made optical system which includes properly applied multi-coatings on all optical surfaces, good baffling aginst stray light and silver coated prisms(boosting light transmission to 95-98 per cent). The binocular also has correctly executed phase coatings on the prisms to assure that as much light as possible reaches the eye. Sharpness is excellent across the vast majority of the field, with the aspherical optics minimising off-axis aberrations including pincushion distortion and field curvature. I wouldn’t be surprised if the overall light transmission is of the order of 80 to 85 per cent(revised in light of the tranmissitivity of the Zeiss Terra ED pocket glass with a light tranmsission of 88 per cent).

One of my pet peeves is seeing glare in the image when the binocular is pointed at a strongly backlit scene. I was delighted to see that apart from very slight crescent glare  when pointed near the Sun, the images generally remained stark and beautifully contrasted. These good impressions were also confirmed by more stringent tests conducted indoors by aiming the pocket binocular at my iphone torch set to its maximum  brightness. These tests showed that although there was some weak internal reflections  and flare, they were well within what I would consider acceptable. At night, I was able to see that when the binocular was aimed at some bright sodium street lamps, only very slight ghosting was evident. Finally, aiming the 8 x 25 at a bright full Moon revealed lovely clean images devoid of any on axis flaring and internal reflections. Placing the Moon just outside the field did show up some flaring however, but I deeemed the result perfectly acceptable. You can chalk it down that these results are excellent, especially considering the modest pricing of the instrument.

Colour correction was very well controlled in both daylight and nightime tests on a bright Moon. On axis, it is very difficult to see any chromatic aberration but does become easier to see as the target is moved off axis. That said, secondary spectrum was minimal even in my most demanding tests, affirming my belief that a well-made achromatic binocular can deliver crisp, pristine images rich in contrast and resolution.

……………………………………………………………………………………………………………………………….

An interesting aside: My former colleague at Astronomy Now, Ade Ashford, reviewed a larger Opticron binocular- the Oregon 20 x 80 – for the October 2019 issue of the magazine. In that review, featured on pages 90 through 94, he confirmed what I had previously stated about larger binoculars with powers up to 20x or so; there is no need to use ED glass if the binocular is properly made and this goes for both daylight viewing and nightime observations. Below is Ashford’s assessment of the 20 x 80’s daylight performance:

And here are his conclusions:

Moreover, Ashford offers this sterling advice to the binocular enthusiast:

” …..don’t get hung-up on ED glass instruments. A well-engineered achromatic model will perform well, particularly if it uses Bak-4 prisms and its optical surfaces are multi-coated throughout.”

pp 91

Having ED glass counts for nothing if the binocular is not properly made. I would much rather have a well made achromatic instrument than have a poorly constructed model with super duper objective lens elements.

…………………………………………………………………………………………………………………………..

A fine quality pocket binocular in the plam of your hand.

My Little Aston Martin:

The little Opticron has already accompanied me on a few hill walks, a Partick Thistle FC( sad, I know!) testimonial and numerous rambles near my rural home, where it has delivered wonderful crisp images that never fail to delight. The field of view(5.2 degrees) is a little on the narrow side as pocket binoculars go, but its plenty wide enough for most applications and besides, the distortion free images nearly from edge to edge quickly override any perceived handicap of having a restricted viewing field.

Its tiny size and lack of garish colouring make it the ideal instrument to bring along to sports events, where it doesn’t attract attention from fellow crowd members. The Opticron is also a most excellent instrument to examine colourful flowers, butterflies and other marvels of nature near at hand, thanks to its excellent close focus; measured to be ~51 inches.And because its waterproof, it would also make an excellent companion while sailing or fishing.

The Opticron pocket binocular comes with a very high quality padded pouch to protect the instrument from any kind of rough handling.

Of course, the power of a small, high-quality pocket binocular quickly dwindles as the light begins to fade in the evening, or during the attenuated light before dawn, where a larger field glass really comes into its own. A little pocket binocular like this is far from the ideal instrument for viewing the night sky, but it can still be used for the odd look at the Moon, a starry skyscape or brightly lit cityscape.

I consider weatherproofing to be a sensible and worthwhile addition to any binocular and is certainly welcome on this second generation Opticron Aspheric. The instrument is purged with dry nitrogen gas at a pressure slightly higher than atmospheric pressure. This positive pressure helps to keep out dust and marauding fungi, and the sensibly inert nature of nitrogen ensures that internal components(including the silver coated prisms), will not tarnish or oxidise any time soon. This will only serve to increase the longevity and versatility of the binocular in adverse weather conditions, especially in my rather damp, humid climate. When not in use, I have taken to storing all my binoculars in a cool ( ~60 F) pantry with silica gel dessicant inside their cases. Yep, all my instruments are in it for the long haul.

Quality you can wear.

The Opticron Aspheric LE WP 8 x 25 is an excellent example of how a well made, achromatic binocular can deliver wonderful, sharp and high-contrast images. It is more expensive than many other pocket binoculars, but you most certainly get what you pay for.

 Thanks for reading!

Neil English’s new title, The ShortTube 80; A User’s Guide, will hit the bookshelves in early November 2019.

 

De Fideli.