Earth Story.

Chosen Planet

An Essay Originally Published in Salvo Magazine Volume 51

Updated periodically as new science emerges

 

 

For this is what the Lord says—

he who created the heavens,

 he is God; he who fashioned and made the earth,

 he founded it; he did not create it to be empty,

 but formed it to be inhabited— he says:

“I am the Lord, and there is no other.

                                                                                                             Isaiah 45: 18

Just a few short decades ago, the Earth was considered to be an ordinary planet, orbiting an ordinary star, lost in a vast galaxy of other stars, amid myriad other galaxies populating the Cosmos. Mindless processes produced the first living organisms, we were told, which slowly evolved over the eons to produce creatures like us1. This secular myth was accepted hook line and sinker by the uneducated masses after its promotion by God-denying ‘high priests’, including the late Arthur C. Clarke, Carl Sagan and Richard Dawkins, and mindlessly parroted by a generation of science journalists unwilling to dig any deeper. Yet, with the exponential rise of human knowledge, this worldview is being radically over-turned by an avalanche of new science, that paints an entirely different picture of our world: one in which its exceptional properties for supporting a long-lived biosphere for the express benefit of humanity in particular, is coming to the fore; where life itself ‘terraformed’ the Earth under Divine instruction.

An Anomalous Solar System

Many lines of evidence show that the Earth is old; 4.543 billion years with an uncertainty of just one per cent. But the circumstances under which our planetary system was shaped were very unusual. Formed from the gravitational collapse of a vast cloud of gas and dust, the proto-solar system condensed into a relatively thin disk with the neonatal Sun at its center. The inventory of elements endowed to the solar system might have turned out to be much like any other were it not for the presence of at least two relatively close-by supernova events2 which helped eject it from a nursery of other stars, but which also enriched the primordial solar system with relatively large quantities of heat-generating radioactive elements such as aluminum 26, thorium and uranium3. The aluminum 26, with its short half-life of 730,000 years, provided enough thermal energy to remove excess levels of volatiles including water, carbon monoxide and carbon dioxide which would have scuppered the future emergence of living creatures on our world. In contrast, the very dense and long-lived radioactive elements like uranium and thorium sank to the center of the primordial earth, where their prodigious heat has kept the planet in a geologically active state over billions of years.

The most recent research on star formation shows that the Sun is far from being an average star4. Indeed that distinction goes to stars with masses roughly 50 per cent less massive than the Sun, with luminosities only 5 per cent as bright and surface temperatures of 3600K4, comprising some 80 per cent of all the stars in the Universe. Many more are smaller L dwarfs that are unable to fuse hydrogen in their cores, or larger stars than the Sun that have much shorter lifespans. In the words of the  University of Rochester astrophysicist Adam Frank;

Please stop calling our Sun an “average star. It is philosophically dubious and astronomically incorrect.4 ”

The Moon-forming event, which is thought to have occurred about 100 million years after the neonatal Earth formed5, in a highly improbable, oblique collision with a Mars-sized object, helped remove still more volatiles from the primordial Earth, allowing it to eventually form relatively shallow oceans where the continental land-masses could eventually emerge from the sea floor.  The debris from this cataclysmic event formed a relatively large Moon in close proximity to the Earth, helping to stabilize its orbital inclination and over time, to slow down the rotation rate of our planet from just 5 hours shortly after the Moon’s formation, to its present leisurely rotation period of 24 hours.

For the first few hundred million years after its formation, the Earth would have looked black and golden from the vantage of outer space, from the vast amounts of solidified magna cooling on its surface as well as the prodigious levels of volcanic activity spewing out hot lava from the planet’s interior. Frequent collision events with smaller space debris like asteroids would also have exacerbated these hellish conditions, but eventually the prodigious levels of water vapor outgassed from its interior would have transformed our lava dominated planet into a blue water world still devoid of continental landmasses.5 But just as soon as the Earth cooled down enough to enable liquid water to flow on its surface, life appeared.

Life Terraforms the Planet

The standard evolutionary story is that life began as simple organisms and gradually progressed to more complex forms with the slow march of time, but the best scientific evidence now suggests that this life was already complex and biochemically sophisticated. This is based on isotopic evidence6,7 from the analysis of ratios of carbon and sulfur isotopes in sedimentary rocks laid down over 3.5 billion years ago. Since these biochemical processes have an absolute requirement for highly complex protein enzymes to have been present, it completely eludes an evolutionary explanation. Then why did our Creator choose to begin Earth’s life story with microbes? The answer has less to do with evolution than it has with chemical sophistication. The simple answer is that microbes are, by some considerable margin, the hardiest creatures ever to have lived on our planet.

Microbes are the die-hards of the living world, being capable of surviving in very hot and cold temperatures, high and low pH environments, and can even thrive in a cocktail of toxic chemicals and radioactive environments. Once the planet cooled enough to allow the first microbes to survive, they were set to work removing a plethora of poisonous substances from the primordial Earth. In these early times, the Earth’s surface would have had large amounts of so-called vital poisons, substances that are required in small amounts for more complex life to thrive, but in higher concentrations, can prove lethal; substances like iron, copper, zinc, molybdenum, arsenic, boron, selenium and iodine, to name but a few. In their soluble forms such vital poisons would have stunted any new life forms coming on the scene but in chemically transforming these elements8 into insoluble ores and minerals, microbes not only  removed such vital poisons from the Earth’s water environments but also formed large deposits of the valuable minerals that are now mined for their use in high technology devices. This also makes sense from a creation point of view, as more complex organisms are far more sensitive to these toxins than microbes are. One other benefit that life brought to the Earth is that it greatly enriched the planet’s mineral and gemstone tally. According to Dr. Robert Hazen, a world-leading mineralogist, Earth has the greatest diversity of mineral species of any body in the Solar System.5 Over 4,600 mineral species have been identified on Earth. In contrast, Mars probably has about 500 and Venus about 1,000 at the most. What’s more, Hazen discovered that life processes formed about two-thirds of Earth’s mineral species5.

Recent oxygen isotope evidence shows that ongoing plate tectonic activity produced nearly all the continental landmasses by about 2.5 billion years ago.9 The fact that just 29 per cent of the planet’s surface area is covered by dry land appears to be highly fine-tuned. Greater land surface areas would induce too little precipitation in the interior of those ancient continents, preventing life from gaining a hold in these places. On the other hand, land areas significantly less than 29 per cent would not be able to re-cycle enough valuable nutrients between the land, the sea and the atmosphere to maintain a healthy biosphere.

The earliest lifeforms extracted energy from these minerals without the need for molecular oxygen, but the introduction of photosynthetic microbes radically transformed the early biosphere, paving the way for the introduction of advanced lifeforms. One way to get a handle on how early oxygenic photosynthesis occurred on Earth is to study so-called Banded Iron Formations (BIFs)comprised of iron rich clays containing magnetite and hematite. The early oceans had high concentrations of soluble iron, but when it reacts with oxygen, it forms an insoluble rust-like substance that serves as iron ore today.

Such studies reveal that BIFs were first laid down about 3.0 billion years ago, continuing up to about 1.8 billion years ago.10 This coincides with the microfossil record of life, which shows that oxygen-dependent complex cellular life (the so-called Eukaryotes) made its first appearance around 2 billion years ago.11The rise in atmospheric oxygen also created the ozone layer, which protected future life on land from the damaging effects of ultraviolet radiation from the Sun. The emergence of oxygen-generating photosynthesis had other effects that are not immediately obvious. When the Sun was born, it was about 30 per cent less luminous than it is today, but as it aged, its luminosity increased with the result that the amount of thermal energy received by the planet also increased. Photosynthetic organisms removed great amounts of greenhouse gases from the atmosphere by absorbing carbon dioxide and generating oxygen which reacted rapidly with another greenhouse gas, methane. In so doing, photosynthetic organisms served to counteract the tendency of the aging Sun to overheat the planet.12 The remains of these and other unicellular creatures settled to the bottom of the oceans where they formed vast sediments that were compressed over time to produce natural gas and oil reserves so important to human civilization today.

After a long cooling phase coinciding with the formation of the supercontinent, Rhodinia5, signs of the first large(macroscopic) multicellular lifeforms appeared about 600 million years ago in an event known to palaeontologists as the Avalon Explosion, where scientists have uncovered the first evidence of simple animal lifeforms. It is unclear however whether these bizarre creatures were animals or plants but what is clear is that in the space of a short 410,000 year period starting around 541 million years ago, 80 per cent of all existing animal forms appeared in the fossil record, with no credible evolutionary antecedents3,22. Paleontologists studying the so-called Cambrian Explosion have found no transitional forms in layers immediately pre-dating this period in Earth history. Moreover, the land was being prepared for the arrival of vascular plants by fungi who began breaking down rocks into soil as early as about 1000 million years ago14.  It is difficult to conceive how any blind process like Darwinian evolution could produce such stunning biological complexity and diversity in such a short space of time without any foresight.

In recent times, a greater appreciation of the interplay between life and plate tectonics has been appreciated. Without plate tectonics, our planet wouldn’t have a climate stable enough to support life over billions of years of time. That’s because plate tectonics takes center stage as a planetary thermostat in a process called the “carbonate-silicate” cycle.13 Carbon dioxide in the atmosphere dissolves in rainwater to form carbonic acid, which dissolves silicate rocks. The by-products of this erosion, or “weathering,” are conveyed to the oceans where they are ingested by organisms—such as tiny planktonic foraminifera—and incorporated into limestone (calcium carbonate) shells. When those creatures die, they fall to the bottom of the ocean and pile up as sediments, creating new raw materials used by humanity. The introduction of life on planet Earth also increases the amount of water subducted into the mantle, where it functions as a kind of lubricant, facilitating motions between plates. It also lowers the melting point in the mantle, which leads to more volcanism and therefore more continent building. So, without life speeding up the weathering at the surface as well as the sedimentation rate on the sea floor, the fraction of the surface covered by continents would be far smaller.

Plate tectonics has other, hitherto unforeseen consequences for the maintenance of the Earth’s strong magnetic field.  By accelerating the transfer of heat to the surface, plate tectonics induces convection in the liquid iron outer core of our planet. What’s more, it’s the dynamic outer core that generates our planet’s magnetic field, which protects Earth’s atmosphere and oceans from excessive erosion and desiccation from the solar wind as well as all surface life from dangerous cosmic rays.

The fossil record attests to several mass extinction events that occurred over the long history of our planet.14 Research has shown that these devastating events are followed by equally spectacular mass speciation events, uncannily similar to the scenarios described in Psalm 104. According to Christian astronomer, Dr. Hugh Ross, these events proved crucial for maximizing both the quantity and longevity of Earth’s life.15 By ensuring that the right quantities and kinds of life are present at the right times, our Creator employed these organisms to remove the just-right quantities of greenhouse gases from Earth’s atmosphere so as to compensate for the Sun’s increasing brightness. According to Ross, one would expect God to intervene periodically to remove life no longer appropriate for compensating for a brightening Sun and then replace it with life that is more efficient at doing so. Finally, in the last few hundred million years, vast deposits of coal and oil were produced from the remains of plant life that flourished on land during the Carboniferous and Permian (360 to 250 million years ago) periods, which was necessary for the launch of the industrial revolution.

Jewel Planet

Seen in the light of these new scientific discoveries, it is apparent that the Earth is a highly fine-tuned planet that has sustained a very stable environment over 4 billion years for the flourishing of life. And that same life transformed our world beyond recognition to make it ideal for humans to thrive in. This consensus is now being expressed by other scientists, who have noted Earth’s amazing properties. Influential books like Donald Brownlee and Peter Ward’s Rare Earth18: why complex life is are in the Universe, David Waltham’s Lucky Planet19, John Gribbin’s Alone in the Universe20 as well as Privileged Planet21by Guillermo Gonzalez and Jay Richards, all seem to be singing from the same hymn sheet. Far from being a humdrum planet orbiting an ordinary star, the Earth was designed by a mind vastly more advanced than our own. And I give God all the glory!

 

Neil English is the author of several books in amateur astronomy. His latest historical work, Chronicling the Golden Age of Astronomy, is published by Springer-Nature.

 

 

 

 

References

  1. Sagan, C. Cosmos, MacDonald Futura Publishers, London, 1981.
  2. Eric Gaidos et al., “26Al and the Formation of the Solar System from a Molecular Cloud Contaminated by Wolf-Rayet Winds,” Astrophysical Journal 696 (May 10, 2009): 1854–63.
  3. Ross, H., Elemental Evidence of Earth’s Divine Design; https://reasons.org/explore/publications/nrtb-e-zine/read/nrtb-e-zine/2010/03/01/elemental-evidence-of-earth-s-divine-design
  4. Frank, A., What is the “Avergae Star” like? Hint: It’s not like our Sun: https://bigthink.com/13-8/average-star/
  1. Hazen, R. The Story of Earth, Penguin, 2012.
  2. Allen P. Nutman et al., “≥3700 Ma Pre-Metamorphic Dolomite Formed by Microbial Mediation in the Isua Supracrustal Belt (W. Greenland): Simple Evidence for Early Life?” Precambrian Research 183, no. 4 (December 15, 2010): 725–37.
  3. Yanan Shen et al, “Isotopic Evidence for Microbial Sulphate Reduction in the Early Archaean Era,” Nature 410 (March 1, 2001): 77–81.
  4. Gadd, G.M., Metals, minerals and microbes: geomicrobiology and bioremediation https://mic.microbiologyresearch.org/content/journal/micro/10.1099/mic.0.037143-0;jsessionid=CfnAVoIxE-Nxln81QM-D2S0N.x-sgm-live-02
  5. N. Bindeman et al., “Rapid Emergence of Subaerial Landmasses and Onset of Modern Hydrologic Cycle 2.5 Billion Years Ago,” Nature 557 (May 23, 2018): 545–48, https://doi:10.1038/s41586-018-0131-1.
  6. James, H.L. (1983). Distribution of banded iron-formation in space and time. Developments in Precambrian Geology, 6, 471–490.
  7. Simonetta Gribaldo et al., “The Origin of Eukaryotes and Their Relationship with the Archaea: Are We at a Phylogenomic Impasse?” Nature Reviews Microbiology 8 (2010): 743–52.
  8. Ross, H. Improbable Planet, Baker Books, 2016.
  9. Ross, H., Cambrian Explosion Becomes More Explosive:                                   https://reasons.org/explore/blogs/todays-new-reason-to-believe/cambrian-explosion-becomes-more-explosive
  10. https://theconversation.com/complex-life-may-only-exist-because-of-millions-of-years-of-groundwork-by-ancient-fungi-117526
  11. Walker, J.C.G., Hays, P.B., & Kasting, J.F. A negative feedback mechanism for the long-term stabilization of Earth’s surface temperature. Journal of Geophysical Research 86, 9776-9782 (1981).
  12. Melott & Bambach, “Do Periodicities in Extinction—With Possible Astronomical Connections—Survive a Revision of the Geological Timescale?” Astrophysical Journal 773 (August 10, 2013).
  13. Ross, H. Mass Extinction Periodicity Design; https://www.reasons.org/explore/publications/nrtb-e-zine/read/nrtb-e-zine/2013/12/01/mass-extinction-periodicity-design
  14. Brownlee, D. & Ward, P., Rare Earth, Why Complex Life is Uncommon in the Universe, Springer, 2000
  15. Waltham, D., Lucky Planet, Icon Books, 2015
  16. J., Alone in the Universe; Why our Planet is Unique, John Wiley, 2011.
  17. Gonzalez, G. & Richards, J, The Privileged Planet: How Our Place in the Cosmos Is Designed for Discovery, Regnery Publishing, 2004.
  18. Ross, H., Cambrian Explosion Becomes More Explosive: https://reasons.org/explore/blogs/todays-new-reason-to-believe/cambrian-explosion-becomes-more-explosive

 

 

                                                                                                                       

De Fideli.

Paradigm Shifts.

The Story of the Solar System: The Primordial Earth - skyatnightmagazine

Originally Published in Salvo Magazine Volume 50

“Life should not exist. This much we know from chemistry. In contrast to the ubiquity of life on Earth, the lifelessness of other planets makes far better chemical sense.” So writes Professor James Tour, one of the world’s foremost synthetic organic chemists, based at Rice University in Texas. Intimately acquainted with the latest research in prebiotic chemistry, Tour has expressed severe skepticism that a plausible naturalistic mechanism for the origin of life will be found any time soon. But he goes even further:

 

“We synthetic chemists should state the obvious. The appearance of life on Earth is a mystery. We are nowhere near solving this problem. The proposals offered thus far to explain life’s origin make no scientific sense. Beyond our planet, all the others that have been probed are lifeless, a result in accord with our chemical expectations. The laws of physics and chemistry’s Periodic Table are universal, suggesting that life based upon amino acids, nucleotides, saccharides and lipids is an anomaly. Life should not exist anywhere in our Universe. Life should not even exist on the surface of the Earth.”1

Dr. Tour’s views have surfaced at a time when astronomers have been peering into the depths of space, searching for intelligent signals from hypothetical alien civilizations. Yet although they have been listening for more than half a century, ET has not chimed in. The quest to detect life beyond the Earth is admittedly in its infancy, but the negative results thus far produced have caused more than a few scientists to question the underlying assumptions made by the early pioneers in the quest to find extra-terrestrial life: Frank Drake and Carl Sagan.

Despite what the general media report, there are a number of serious problems with the standard origin-of-life models, for which their proponents have failed to provide good answers. For example, life on Earth requires a source of homochiral molecules, that is, molecules that are capable of rotating the plane of polarized light either to the left (L) or to the right (D). Specifically, life invariably requires L amino acids and D sugars. But so far, chemists have been unable to identify a plausible natural mechanism by which these left- and right-handed biomolecules can be generated at the high level of purity necessary for the first cells to form. Indeed, such molecules can only be synthesised under highly constrained laboratory conditions, using purified (read bought in) reagents, which have little or no relevance to the environment of the early Earth. And while meteorites have been found that contain small amounts of amino acids, they invariably are shown to contain equal amounts of L and D isomers (technically known as a racemic mixture).

In short, no conceivable naturalistic scenario could result in the generation of the large, stable ensembles of homochiral ribose and homochiral amino acids that all naturalistic origin-of-life models require, affirming why no such natural sources have ever been found.2 I recently asked Dr. Tour directly if the problem of homochirality had been solved, and he firmly responded, “No; it is far from solved.”

 

The Phosphorus Conundrum

The element phosphorus is vital for the proper functioning of living cells, being a constituent of both RNA and DNA, as well as of adenosine triphosphate (ATP), the universal energy currency of all known life forms. But recent work conducted by Cardiff University astronomers suggests that phosphorus could be scarce in many parts of the universe. “Phosphorus is one of just six major chemical elements on which Earth organisms depend,” says Dr. Jane Greaves, and it is crucial to the compound ATP, which cells use to store and transfer energy. Astronomers have just started to pay attention to the cosmic origins of phosphorus and found quite a few surprises. In particular, phosphorus is created in supernovae—the explosions of massive stars—but the amounts seen so far don’t match our computer models. I wondered what the implications were for life on other planets if unpredictable amounts of phosphorus are spat out into space and later used in the construction of new planets.3

 

The Cardiff team used the UK’s William Herschel telescope, situated on La Palma in the Canary Islands, to measure the levels of phosphorus and iron in the Crab Nebula, a well-known supernova remnant. They compared those figures to measurements taken earlier from another supernova remnant known as Cassiopeia A (Cas A). Their preliminary results proved very surprising. While the measurements of Cas A showed relatively high levels of phosphorus, those from the Crab Nebula showed far lower levels. “The two explosions seem to differ from each other, perhaps because Cas A results from the explosion of a rare type of super-massive star,” said Dr. Phil Cigan, another member of the Cardiff team. “If phosphorus is sourced from supernovae,” added Greaves, and then travels across space in meteoritic rocks, I’m wondering if a young planet could find itself lacking in reactive phosphorus because of where it was born? That is, it started off near the wrong kind of supernova? In that case, life might really struggle to get started out of phosphorus-poor chemistry on another world otherwise similar to our own.4

 

Re-evaluating the Drake Equation

Ever since the American astronomer Frank Drake introduced his famous eponymous equation in the early 1960s, astronomers have produced widely varying estimates of the number of extant extra-terrestrial civilizations present in the Milky Way Galaxy. Until fairly recently, the estimates varied from 10,000 to a few million. Countering these estimates, some scientists have re-examined the so-called Fermi Paradox, posed by the distinguished Italian physicist Enrico Fermi in the form of a question: If the universe is so large, with innumerable habitable planets, then why have we not detected any sign of ET?

A team of scientists and philosophers based at the Institute of Humanity in Oxford University has taken a new look at the reasoning behind the Drake equation, and found that its optimistic expectations are linked to models like the Drake equation itself. The problem, as these researchers point out, is that all such models “implicitly assume certainty regarding highly uncertain parameters.” Indeed, following an analysis, they concluded that “extant scientific knowledge corresponds to uncertainties that span multiple orders of magnitude.” When these uncertainties are introduced, the outcome is strikingly different: “When the models are re-cast to represent realistic distributions of uncertainty, we find a substantial ex ante probability of there being no other intelligent life in our observable universe, and thus that there should be little surprise when we fail to detect any signs of it.” This result, they assert, “dissolves the Fermi paradox, and in doing so removes any need to invoke speculative mechanisms by which civilizations would inevitably fail to have observable effects upon the universe.”5

 

Questioning the Mediocrity Principle

Over the past few decades, astronomers have discovered thousands of exo-planets orbiting nearby stars, so that now there is little doubt that the number of planets in the observable universe likely exceeds the number of stars. Exo-planet hunters have discovered that many of these planets orbit their stars within the so-called habitable zone—that narrow annulus around a star that allows for the stable existence of water on a planet’s surface. Nevertheless, as geologist Peter Ward and astronomer Donald Brownlee argued in their highly influential book, Rare Earth; Why Complex Life Is Uncommon in the Universe,6 many of the features of planet Earth that have made it suitably equipped to allow both microbial and complex life to flourish on it over billions of years are likely very rare in the rest of the Universe.

For instance, the vast majority of potentially habitable exo-planets orbit low-mass red dwarf stars, which make up 75 percent of all the stars in the galaxy.7 These stars are much more active than sun-like stars, thus exhibiting higher rates of flaring than does the Sun. Many such stars also generate strong stellar winds that could strip away the atmospheres of their planets.8 And many planets are located so close to their parent stars that they have become tidally locked, meaning that they do not rotate on an axis but constantly present the same face to their stars as they move in their orbits. Yet another issue pertains to the potential of gravitational perturbations of a habitable planet by its neighbouring planets. Even small changes to the orbital characteristics of a planet could extirpate any developing life that might exist upon it. All these conditions raise many problems for the development of any hypothetical life forms on the surface of these planets over long periods of time.

NASA’s Hubble Space Telescope is currently being utilized in a special program called HAZMAT—Habitable Zones and M Dwarf Activity Across Time. And the early results from the program do not look encouraging. Preliminary data on just a dozen young red dwarf stars show that the frequency of flaring is much higher in them than in stars like the Sun; they typically emit flares with energies that are between 100 and 1,000 times higher than those of their elder counterparts. The most energetic red dwarf flares, dubbed Hazflares, are far more energetic than the most energetic flares ever to come from the Sun. “With the Sun, we have a hundred years of good observations,” says Parke Loyd, a member of the scientific team involved in the project.

And in that time, we’ve seen one, maybe two, flares that have an energy approaching that of the Hazflare. In a little less than a day’s worth of Hubble observations of these young stars, we caught the Hazflare, which means that we’re looking at superflares happening every day or even a few times a day.9

So-called super-earths—worlds larger than the Earth but smaller than Neptune—have recently been identified as possible candidate worlds for the development of life, but there is as yet no scientific consensus on whether they can maintain or even allow plate tectonic activity to occur in their crusts. Without plate tectonics, there will be far less efficient nutrient re-cycling, which would greatly hinder the flourishing of hypothetical life forms.

In March 2019, a team of astronomers based at the Australian National University dealt yet another blow to the prospects of finding viable exo-planetary biosystems. Modelling the magnetic fields of a large number of exo-planets, the astronomers concluded that planets with a strong magnetic field, like Earth, are likely to be very rare. “Magnetic fields appear to play an essential role in making planets habitable, so I wanted to find out how Earth’s magnetic field compared to those of other potentially habitable planets,” says Sarah Macintyre, the lead author of the paper.10 “We find most detected exo-planets have very weak magnetic fields, so this is an important factor when searching for potentially habitable planets,” she added.

Life on Mars or Venus?

Scarcely a year goes by without the question arising of whether or not Mars has microbial life. This issue was brought into sharp focus in June 2018, when NASA scientists announced the discovery by the rover Curiosity of organic matter in the soil of an ancient lakebed.11 But “organic matter” means different things to different people. Simply put, matter that is carbon-rich is not necessarily derived from biogenic sources.

More broadly though, if evidence of either extant or past life on Mars is uncovered, it might well also be discovered that such life originated on Earth. Indeed, it is estimated that over the 4-billion-year history of life on Earth, so much terrestrial soil has found its way to Mars that the Red Planet can boast an average of 2 kilograms of terrestrial soil per square kilometre of its surface (or about 11.3 pounds per square mile).12 It is certainly possible that some microbial life was delivered there along with the soil—in fact, the discovery of either extant microbial life or microfossils on Mars or the recent claim of life in the clouds of Venus might well be anticipated. If that happens, astrobiologists will need to consider the possibility that it came from Earth before claiming that any such life originated on these worlds. The popular media, pushing sensationalism, would never be so cautious.

Questioning Biosignatures on Exo-planets

Oxygenic photosynthesis by plants is the mechanism that produces the vast majority of the molecular oxygen in the terrestrial atmosphere. So for several decades, astrobiologists have speculated that the detection of oxygen in the atmosphere of an exo-planet would provide good evidence that life must exist there.13 While the detection of substantial levels of this gas would certainly be suggestive of the presence of plant life as we know it, it pays to remember that there are established abiotic mechanisms (mechanisms derived from non-living sources) that also can generate substantial molecular oxygen.

A group headed by Chinese astronomer Feng Tian of Tsinghua University published two interesting papers in 2009 that show that stars having less than 50 percent of the mass of the Sun (i.e., the majority of stars) emit copious quantities of hard UV rays and soft X rays throughout their long nuclear burning phases of up to 10 billion years.14 They also showed that when a lifeless exo-planet possessing carbon dioxide in its atmosphere is irradiated, the rays can break down the CO2 into carbon atoms and molecular oxygen. Over time, the carbon atoms, being less massive, escape into space, leaving the molecular oxygen behind. Tian’s calculations show that this molecular oxygen can reach concentrations of a few percent and so might be confused with a genuine biosignature.

 When a team of chemists from Johns Hopkins University simulated the atmospheres of exo-planets beyond the solar system, they found that they could create simple organic molecules and oxygen under various scenarios without the mediation of life.15 “Our experiments produced oxygen and organic molecules that could serve as the building blocks of life in the lab, proving that the presence of both doesn’t definitively indicate life,” says Chao He, assistant research scientist in the Johns Hopkins Department of Earth and Planetary Sciences. “Researchers need to more carefully consider how these molecules are produced.” Up-and-coming missions, such as the highly anticipated ones utilizing the James Webb Space Telescope, would need to take results like these into account before jumping to any firm conclusions about the habitability of a candidate planet. As a case in point, the recent flap in the media about the detection of phosphine on Venus, upon further analysis, showed that the biomarker in question was not,  in fact, present in statistically significant levels.

In a recent development, a team of planetary scientists led by Li Zeng at Harvard University estimated that as many as 35 percent of exo-planets may have impenetrable water oceans hundreds of kilometres deep.16 But while NASA has long adopted the mantra, “follow the water,” the same scientists caution that these planets are very unlikely to be habitable. Their fathomless ocean worlds would generate pressures millions of times greater than those found on Earth, resulting in exotic, rock-like ice formations many kilometres deep (such as ice VII) covering their floors. Such conditions would prevent any nutrient recycling from occurring, thus rendering these planets sterile.

Call for Caution

Investigating whether extra-terrestrial life exists or not is a profoundly important and interesting scientific endeavor, but at this point, there are good grounds for remaining skeptical about whether it actually exists. Given the arguments raised in this article, it is entirely reasonable to think that life might be extraordinarily rare in the universe, perhaps even unique to Earth. Only time will tell.

 

Notes

  1. James Tour, An Open Letter to My Colleagues (August 2017): http://inference-review.com/article/an-open-letter-to-my-colleagues.
  2. Hugh Ross and Fazale Rana, Origins of Life (RTB Press, 2014).
  3. “Paucity of phosphorus hints at precarious path for extraterrestrial life” (Apr. 4, 2018): eurekalert.org/pub_releases/2018-04/ras-pop040318.php.
  4. Ibid.
  5. Anders Sandberg et al., “Dissolving the Fermi Paradox” (June 8, 2018):

https://arxiv.org/pdf/1806.02404.pdf.

  1. Peter D. Ward and Donald Brownlee, Rare Earth; Why Complex Life Is Uncommon in the Universe (Copernicus Books, 2000).
  2. “Superflares from young red dwarf stars imperil planets,” NASA News (Oct. 22, 2018):

https://exoplanets.nasa.gov/news/1527/superflares-from-young-red-dwarf-stars-imperil-planets.

  1. O. Cohen et al., “Magnetospheric Structure and Atmospheric Joule Heating of Habitable Planets Orbiting M-Dwarf Stars,” Astrophysical Journal 790 (July 2014): doi:10.1088/0004-637X/790/1/57.
  2. Ibid., note 7.
  3. “Strong planetary magnetic fields like Earth’s may protect oceans from stellar storms,” Royal Astronomical Society (Mar. 14, 2019): https://m.phys.org/news/2019-03-strong-planetary-magnetic-fields-earth.html.
  4. Jennifer L. Eigenbrode et al., “Organic Matter Preserved in 3-Billion-Year-Old Mudstones at Gale Crater, Mars,” Science 360 (June 8, 2018): https://doi:10.1126/science.aas9185.
  5. Ibid., note 2.
  6. Carl Sagan et al., “A Search for Life on Earth from the Galileo Spacecraft,” Nature 365 (Oct. 21, 1993): nature.com/articles/365715a0.
  7. Feng Tian, “Thermal Escape from Super Earth Atmospheres in the Habitable Zones of M Stars,” Astrophysical Journal 703 (Sept. 2, 2009): https://dspace.mit.edu/bitstream/handle/1721.1/96200/Tian-2009-THERMAL%20ESCAPE%20FROM.pdf;sequence=1; Feng Tian et al., “Thermal Escape of Carbon from the Early Martian Atmosphere,” Geophysical Research Letters 26 (Jan. 31, 2009): https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2008GL036513.
  8. Chao He et al., “Gas Phase Chemistry of Cool Exoplanet Atmospheres: Insight from Laboratory Simulations,” ACS Earth Space Chemistry (Nov. 26, 2018): https://pubs.acs.org/doi/10.1021/acsearthspacechem.8b00133.
  9. Li Zeng et al., “Growth model interpretation of planet size distribution,” PNAS (Apr. 29, 12019): pnas.org/content/early/2019/04/23/1812905116.

 

 

Neil English has been following developments in pre-biotic chemistry and astrobiology for the last 25 years. He holds a Ph.D. in biochemistry and a BSc(Hons) in physics & astronomy. His latest book, Chronicling the Golden Age of Astronomy (Springer, 2018), explores four centuries of visual astronomy. The article first appeared in Salvo Magazine Summer 2019. You can support his ongoing work by making a small donation to his website. Thanks for reading!

 

 

De Fideli.

Old vs New.

How does a classic Zeiss binocular square up to a modern roof prism binocular?

Unlike telescopes, which are mainly used by dedicated amateur astronomers, binoculars, for obvious reasons, are owned and used by a much broader cross section of the general population. When my students get to know me, they will inevitably have to endure my unbridled enthusiasm for optical devices of all kinds lol, and that includes binoculars. One of my mathematics students, Sandy, expressed an unusual interest in some of my instruments, and he further informed me that his parents, who run a small ferrying business at Balmaha, on the shores of nearby Loch Lomond, used several binoculars in their everyday work. My interest was further piqued when Sandy told me that his grandfather owned a big Zeiss binocular, which was inherited by his father and would eventually be passed on to him in the goodness of time. I asked Sandy whether he would be willing to bring the Zeiss binocular by so that I could have a look at it. After checking with his parents, Sandy agreed and kindly allowed me to use it for a week in order that I could assess it and give it a good clean. Naturally enough, I jumped at the opportunity!

The instrument, a Carl Zeiss Jenoptem 10 x 50W porro prism binocular, came in a lovely leather case; a far cry form anything made in this era.

The Zeiss Jenoptem 10x 50W complete with original leather carry case.

The instrument had no lens caps and so had accumulated quite a bit of grime on both the ocular and objective lenses over the years. The Jenoptem, which was manufactured in East Germany(DDR), featured a Zeiss multi-coating, which helped me to date it to after 1978, when the company apparently began to apply their anti-reflection coatings to all the lenses and prisms in the optical train. So my guess is that it was probably acquired in the early 1980s. I believe Zeiss Jena offered a higher quality porro 10 x 50 in the Decarem line around the same period, but I have not had the pleasure of testing one of these units out.

The Zeiss Jenoptem is multi-coated.

The instrument has a very Spartan look and feel about it. Weighing in at about 1 kilogram, the Jenoptem is built like a proverbial tank, with a central focusing wheel and right eye dioptre.Turning the nicely machined metal focusing wheel first clockwise, and then anti-clockwise, all the way through its trave,l showed that it was still in excellent working condition, with zero backlash and bumping that one usually encounters with cheaper porro prism binoculars.

As expected from Zeiss, the Jenoptem has a very well made focuser that moves with silky smoothness and with zero backlash.

To begin the cleaning process, I unscrewed the objective housings from the front of the binocular in order to get at the inside surface of the objective lenses, which had a significant amount of grime as well as a small amount of fungal growth. Using a good quality lens brush, I carefully removed much of the dust before using a microfibre lens cleaning cloth soaked in a little Baader Optical Wonder fluid. In just a few minutes I was able to remove the remaining grime on both the outer and inner surfaces of the binocular objectives, as well as the surfaces of the prisms in the rear module of the instrument. The ocular lenses were also given a good cleaning.

The objectives of the Zeiss Jenoptem can be accessed by uncrewing the front of the binocular from the prism and ocular housing.

I was able to verify that the prisms were indeed coated in the same way as the objectives, although I also discovered that the steel clips holding the prisms in place had rusted significantly over time. I did not attempt to clean the clips, as I judged that doing so might throw the instrument out of collimation.

Note the rusted steel clip holding one of the prisms in place, as well as the anti-reflection coating of the second prism(after cleaning).

The objectives on the Jenoptem after cleaning. Note the anti-reflection coatings.

Seen in broad daylight, I was able to verify that the lens coatings had not suffered much in the way of wearing, looking smooth and evenly applied, giving a bluish or purple cast, depending on the angle of view.

The appearance of the objectives in broad daylight after cleaning.

 

And the ocular lenses.

Optical tests:

After screwing the objective modules back into place, I was now ready to begin my optical tests of this older Zeiss binocular. I compared the views served up by this instrument with those garnered by my Barr & Stroud 10 x 50 Sierra roof prism binocular that I use almost exclusively for astronomical viewing. After setting the right eye dioptre on the Zeiss to suit my own eyes, I started with an iphone torch test to assess how the instruments fared in suppressing glare and internal reflections.

The Zeiss 10x 50W Jenoptem(right) and my Barr & Stroud 10x 50 Sierra roof prism binocular(left).

Because the Zeiss does not have the same close focus (~2m) performance as my Barr & Stroud, I had to place my iphone torch several metres away in my hallway in order to get the Zeiss to focus on its light. As usual, the torch was adjusted to its highest (read brightest) setting. Comparing the two in-focus images, I could see that the Zeiss fared considerably worse than the Barr & Stroud. Specifically, it picked up two fairly bright internal reflections, as well as quite a lot of contrast-robbing diffused light, which rendered the Zeiss image considerably less clean and contrasted in comparison to my control binocular. The difference was quite striking!

After dark, I aimed the binoculars at a bright sodium street lamp and again compared the images served up in both instruments. As expected, the Zeiss showed much more in the way of internal reflections, with a lot of diffused light that produced a fog-like veil around the street lamp. The Sierra 10 x 50 in comparison served up a much more ‘punchy’ image with much better control of internal reflections and far less of the foggy, diffused light evidenced in the Zeiss.

Next, I compared the Zeiss and the Barr & Stroud Sierra on a daylight test, examining a tree trunk in the swing park about 80 yards from my front door. Again, the difference between both instruments was striking! Although the image was very sharp in the Zeiss at the centre of the field, it was noticeably dimmer than the Sierra. That diffused light I picked up in the iphone torch test created a foggy veil that significantly reduced its contrast in comparison to the control binocular. I was also able to discern many more low contrast details in the Sierra owing to its ability to gather significantly more light than the older Zeiss. The colour cast presented by both binoculars was also noteworthy. The Zeiss threw up quite a strong yellowish colour cast  to the Sierra, which showed a much more neutral cast in comparison.

Examining the periphery of the same field also showed that the Sierra was exhibiting a larger depth of focus than the Zeiss, which was quite unexpected, as I had been given to understand that porro prism binoculars in general show more depth of focus than their roof prism counterparts. In addition, the Zeiss showed more distortion at the edges of the field than the control binocular.

The Zeiss Jenoptem has very tight eye relief, which I estimated to be just 10mm. The Barr & Stroud Sierra, in contrast, has much more generous eye relief in comparison- 17mm – making it significantly more suitable for eye glass wearers. Indeed, I found it difficult to image the entire field in the Zeiss, having to move my eyeball around to see the field stops.

In summary, these daylight tests clearly showed that the venerable Zeiss was no match optically for the Barr & Stroud 10 x 50 roof prism I had tested it against. The latter was simply in a different league to the former, no question about it!

Handling in the Field:

The Zeiss is rather big and clunky in my small hands and is more difficult to find that optimal position while viewing for extended periods. Weighing more than 200g more than the Sierra, it is also harder to hold steady. The significantly smaller frame of the Sierra roof prism binocular is much easier to negotiate, and is simply more comfortable to use. In addition, the Zeiss has no provision to mount it on a lightweight tripod or monopod, but the Sierra, like most other modern binoculars, does.

Astronomical tests:

Though the weather proved quite unsettled during the week that I tested the Zeiss, I did get a few opportunities to test it out on the night sky. Once again, I used my Barr & Stroud Sierra 10x 50 roof prism as a suitable control. My first target was a bright, waxing gibbous Moon fairly low in the southern sky. The Zeiss threw up more in the way of internal reflections than the Sierra. The colour cast of the lunar surface appeared more yellow in  the Zeiss compared with the cleaner images of the Sierra. As I expected from my iphone torch tests, the sky immediately arround the Moon was also brighter in the Zeiss, with noticeably lower contrast than the Sierra. Moving the Moon to the edge of the field also showed that the Zeiss threw up more distortions than the Sierra control binocular.

Turning to Vega high in the northwest after sunset produced good on-axis images in both binoculars, but when moved to the edge of the field, the Zeiss threw up that little bit more distortion than the Barr & Stroud Sierra. The same was true when I examined the Pleaides and the Hyades in Taurus.

Conclusions and Implications:

The Zeiss Jenoptem was a good binocular in its day but is clearly inferior in almost every sense to the Barr & Stroud roof binocular used in comparison. 40 years ago, the Zenoptem would have set the average factory worker a whole month’s salary to acquire new. In contrast, the Barr & Stroud Sierra can be had for between £100 and £120 in today’s market.  The value of waterproofing was made manifest in the observation of rusting of some of the metal internal components of the Zeiss. The Sierra, in contrast, is fully waterproof, o-ring sealed and purged with dry nitrogen gas to inhibit internal fogging and corrosion of any metallic components used in its construction.

Enormous advances in optical technology over the last four decades, particularly full broadband multi-coatings applied to all lens and prism surfaces, higher quality optical glass, as well as phase coated prisms on the roof binocular, collectively allow very efficient light transmissions to the eye. This is all the more remarkable since roof prism designs usually have many more optical components than their porro prism counterparts.

Better eregonomics in modern roof prism binoculars as well the employment of strong, low mass polycarbonate housings in their design make them lighter and easier to use than their porro prism counterparts from a generation ago. All of these add to the comfort of using them either during the day or at night when looking at the heavens.

I had a look on ebay to see what these old Jenoptems were being offered for. I found quite a few of them selling for between £150 and £200, so not the high prices demanded by other classic binoculars.

Like with all optical firms, time has marched on, with modern binoculars offering much better performance than earlier models.

This comparison test must have implications for many people who already own or use older binoculars and who have not compared them to modern incarnations. And that’s as true for Zeiss as with any other manufacturer. Indeed, I was quite shocked at how much better my first quality roof prism 8 x 42 roof prism binocular fared compared to an old 7x 50 porro I was gifted back in the early 1990s. Technology has well and truly marched on! And while I like classic instruments just as much as the next guy, I see little point in using any when even modest instruments created in the modern age are likely to perform better than similar instruments made a generation ago. It’s just a hard fact of life.

The technology of the past is certainly interesting but it would be daft to neglect the advances offered in the modern era.

 

I would like to extend my thanks to Sandy and his parents for allowing me to test drive these old binoculars. I will be advising him to use lens caps on the optics when not in use and have also provided a sachet of silica gel desiccant to minimise moisture-induced corrosion of the optic.

 

Neil English discusses all manner of classic telescope technology in his 650+ page historical work, Chronicling the Golden Age of Astronomy(Springer-Nature).

 

De Fideli.

Investigating the Jet Stream

but test everything; hold fast what is good.

                                                                           1 Thessalonians 5:21

 

My Local Weather

 

Jet Stream Data

Introduction:  One of the statements that is oft quoted by observers, particularly in the UK, is that the meteorological phenomenon known as the Jet Stream seriously affects the quality of high resolution telescopic targets. I have decided to investigate these claims to determine to what extent they are true or not, as the case may be. These data will also provide the reader with an idea of the frequency of nights that are available for this kind of testing over the time period the study is to be conducted.

Method: For simplicity, I shall confine my studies to just four double stars that have long been considered reasonably tricky targets for telescopists. To begin with, my targets will include systems of varying difficulty, ranging from 2.5″ to 1.5″ separation, and the aim is to establish whether or not I can resolve the components at high magnification. These systems include *:

Epsilon 1 & 2 Lyrae

Epsilon Bootis

Delta Cygni

Pi Aquilae

* These systems were chosen for their easy location in my current skies, but may be subject to change as the season(s) progress.

Viewers are warmy welcomed to conduct their own set of observations to compare and contrast results in due course.

Instrument Choice & Magnifications Employed:

The 130mm f/5 Newtonian telescope used in the present investigation.

 

A high-performance 130mm (5.1″) f/5 Newtonian reflector was employed to investigate the effects of this phenomenon, as this is an aperture regularly quoted as being sensitive to the vagaries of the atmosphere. Magnifications employed were 260x or 354x (they can however be resolved with less power). The instrument at all times was adequately acclimated to ambient temperatures and care was taken to ensure good collimation of the optical train. No cooling fans used on any of my instruments.

Results;

Date: August 17 2018

Time: 21:20 to 21:35 UT

Location of Jet Stream: Currently over Scotland

Conditions: Mild, 14C, very breezy, mostly cloudy with occasional clear spells, frequent light drizzle.

Observations: Power employed at the telescope 354x

Epsilon 1 & 2 Lyrae: all four components cleanly resolved.

Delta Cygni: Faint companion clearly observed during calmer moments

Epsilon Bootis: Both components clearly resolved during calmer moments.

Pi Aquilae: Slightly mushier view, but both components resolved momentarily during calmer spells.

Truth seeking.

 

Date: August 19 2018

Time: 20:30 – 21:50 UT

Location of Jet Stream: Currently over Scotland.

Conditions: Mild, 13C, mostly cloudy and damp all day but a clear spell occurred during the times stated above, no wind, heavy dew at end of vigil.

Observations: Seeing excellent this evening (Antoniadi I-II); textbook perfect images of all four test systems at 354x and 260x.

Nota bene: A 12″ f/5 Newtonian was also fielded to test collimation techniques and I was greeted with a magnificent split of Lambda Cygni (0.94″) at 663X. Little in the way of turbulence experienced even at these ultra-high powers. Did not test this system on the 130mm f/5.

Clouded up again shortly before 11pm local time, when the vigil was ended.

Date: August 22 2018

Time: 23:30-40 UT

Location of Jet Stream: Currently over Scotland

Conditions: Very mild (15C), breezy, predominantly cloudy with some heavy rain showers interspersed by some brief, patchy clearings.

Observations: Just two test systems examined tonight owing to extremely limited accessibility; Epsilon 1 & 2 Lyrae and Delta Cygni. Both resolved well at 260x.

 

Date: August 22 2018

Time: 21:00-21:25UT

Location of Jet Stream: Currently over Scotland

Conditions; partially cloudy, brisk southwesterly wind, bright Gibbous Moon culminating in the south, +10C, rather cool, transparency poor away from zenith.

Observations: The telescope was uncapped and aimed straight into the prevailing SW wind, as is my custom.

All four systems well resolved at 354x, although visibility of Pi Aql was poor owing to thin cloud covering.

 

Date: August 23 2018

Time: 20:30-45 UT

Location of Jet Stream: Moved well south of Scotland

Conditions: Mostly clear this evening, after enduring heavy showers all day; cool, 10C, fresh westerly breeze, good transparency.

Observations:  All four test systems beautifully resolved this evening (seeing Ant II) at 354x. Just slightly more turbulent than the excellent night of August 19 last.

 

Date: August 24 2018

Time: 20:30-45 UT

Location of Jet Stream: Just west of my observing site.

Conditions: Almost a carbon copy of last night, light westerly winds, cool (9C), good transparency and almost no cloud cover. Very low full Moon in south-southeast.

Observations: All four system resolved at 260x, but less well at 354x owing to slightly deteriorated seeing ( II-III). Delta Cygni seems especially sensitive to seeing.

Nota bene: Epsilon Bootis now sinking fast into the western sky. This test system will soon be replaced by a tougher target, located higher up in my skies; Mu Cygni.

A capital telescope.

 

Date: August 25 2018

Time: 20:20-21:00 UT

Location of Jet Stream: Right over Scotland.

Conditions: Very hazy, calm, poor transparency, cool (9C), seeing excellent (I-II)

Observations: Just three of the four systems examined tonight owing to very poor transparency. Only Pi Aquilae could not be examined. All three were beautifully resolved at 354x.

 

Date: August 26 2018

Time: 22:30-23:05 UT

Location of Jet Stream: Well south of Scotland.

Conditions: After a day of heavy rain, the skies cleared partially around 11pm local time. Fresh westerly breeze, fairly mild (12C), bright full Moon low in the south.

Observations: Mu Cygni observed instead of Epsilon Bootis owing to the latter’s sinking low into the western sky at the rather late time the observations were made.

Three systems well resolved ( Mu Cygni, Pi Aquliae and Epsilon 1 & 2 Lyrae) in only fair seeing, with Delta Cygni B only spotted sporadically in moments of better seeing. This system is very sensitive to atmospheric turbulence due to a large magnitude difference between components, as opposed to their angular separation. 260x used throughout.

Nota bene: Readers will take note of the frequency of observations thus far made.

Date: August 27 2018

Time: 20:30-21:05 UT

Location of Jet Stream: West of the Scottish mainland.

Conditions: Mostly cloudy, mild, 13C, light westerly breeze.

Observations: I took advantage of a few brief clear spells this evening to target my systems(including Epsilon Bootis). Seeing very good despite the cloud cover (II). All four systems easily resolved tonight at both 354x and 260x.

Date: August 29 2018

Time: 20:25-40UT

Location of Jet Stream: Not over Scotland.

Conditions: Mostly clear, occasional light shower, cool (11C), light westerly breeze, seeing and transparencyvery good (II).

Observations: Mu Cygni now replaces Epsilon Bootis.

All systems very cleanly resolved at 354x and 260x.

Nb. All systems also beautifully resolved in a 12″ f/5 Newtonian at 277x, set up alongside the 130mm f/5.

 

Date: August 30 2018

Time: 20:45- 21:00 UT

Location of the Jet Stream:  Not over Scotland.

Conditions: Partially cloudy with some good clear spells, cool (9C), very little breeze.

Observations: Seeing good tonight (II). All  four systems nicely resolved at 260x and 354x.

Note added in proof: Local seeing deteriorated (III-IV) somewhat between 21:00 and 22:00 UT, so much so that Delta Cygni B could no longer be seen.

 

Date: 31 August 2018

Time: 20:30-22:00UT

Location of Jet Stream: North of the British Isles

Conditions: Partly cloudy and becoming progressively more hazy as the vigil progressed. Mild, 12C, very light westerly breeze.

Observations: Seeing only fair this evning (II-III), all four systems resolved at 260x and 354x, though Delta Cygni B visibility was variable.

 

Date: September 1 2018

Time: 20:30-50UT

Location of Jet Stream: to the northwest of the Scottish Mainland.

Conditions: Partially clear, very mild (16C), light southerly breeze, good transparency.

Observations: Seeing quite good (II).  All four systems resolved at 260x and even better delineated at 354x under these clement conditions.

 

Date: September 4 2018

Time: 19:55-20:20UT

Location of Jet Stream: Not over Scotland.

Conditions: Cool (10C), mostly clear, light westerly breeze, good transparency.

Observations: Seeing very good (II).  All four test systems well resolved at 260x and 354x this evening.

 

Date: September 5 2018

Time: 20:35-20:55UT

Location of Jet Stream: Not over Scotland.

Conditions: Very unsettled with frequent squally rain showers driven in by fresh westerly winds. Good clear spells appearing between showers. Transparency very good. 12C

Observations: All four test systems resolved under good seeing conditions (II) at 260x and 354x.

 

Date: September 6 2018

Time: 20:00-25 UT

Location of Jet Stream: Not over Scotland.

Conditions: Cool (8C), little in the way of a breeze, mostly clear, excellent transparency.

Observations: Seeing good (II). All four test systems well resolved at 260x and 354x.

 

Date: September 7 2018

Time: 20:25-40UT

Location of Jet Stream: Not over Scotland.

Conditions: A capital evening in the glen; 11C, good clear sky, brisk westerly breeze, excellent transparency.

Observations: Seeing very good (I-II).  All four test systems beautifully resolved in the 130mm f/5 using powers of 260x and 354x

Nota bene:

Know thine history!

Any serious student of the history of astronomy will likely be acquainted with the early work of Sir William Herschel (Bath, southwest England), who employed extremely high powers (up to 2000x usually but actually he went as high as 6,000x on occasion) productively in his fine 6.3-inch Newtonian reflector with its speculum metal mirrors. The high powers employed by this author are thus fairly modest in comparison to those used by his great predecessor. Check out the author’s new book; Chronicling the Golden Age of Astronomy, due out in October/November 2018, for more details.

Note added in proof:

With the excellent conditions maintained well after midnight, I ventured out at about 00:00 UT,  September 8, and noted Andromeda had attained a decent altitude in the eastern sky. At 00:10UT I trained the 130mm f/5 Newtonian on 36 Andromedae for the first time this season and charged the instrument with a power of 406x. Carefully focusing, I was treated to a textbook-perfect split of the 6th magnitude Dawes classic pair that are ~1.0″ apart. It was very easy on this clement  night. The pair look decidely yellow in the little Newtonian reflector. I made a sketch of their orientation relative to the drift of the field; shown below.

36 Andromedae as seen in the wee small hours of September 8 2018 through the author’s 130mm f/5 Newtonian reflector, power 406x.

 

If you have a well collimated 130P kicking about why not give this system a try over the coming weeks?

 

Date: September 9 2018

Time: 21:10-25UT

Location of Jet Stream: Currently over Scotland

Conditions: Frequent heavy showers driven in from the Atlantic with strong gusts, 11C, some intermittent clear spells.

Observations: Seeing III. 3 systems fairly well resolved this evening. Delta Cygni B only seen intermittently. Magnification held at 260x owing to blustery conditions.

Date: September 12 2018

Time: 00:10-20UT

Location of Jet Stream: Currently over Scotland

Conditions: Very wet, windy with some sporadic clear spells, good transparency once the clouds move out of the way. 10C.

Observations: Seeing (II-III). Just three systems examined tonight; the exception being Pi Aquliae, which was not in a suitable position to observe. All three were well resolved at 260x. Did not attempt 354x owing to prevailing blustery conditions.

 

Date: September 12 2018

Time: 21:40-55 UT

Location of Jet Stream: Not over Scotland

Conditions: Still unsettled, blustery light drizzle and mostly cloudy with some clear spells. 10C.

Observations: Seeing (III), three systems resolved well, Delta Cygni B not seen cleanly at 260x under these conditions.

 

Date: September 14 2018

Time: 19:30-50UT

Location of Jet Stream: Currently over Scotland.

Conditions: Rather cool, (9C), very little breeze, rain cleared to give a calm, clear sky.

Observations: Seeing II. All four systems cleanly resolved at 260x and 354x

 

Date: September 16 2018

Time: 19:20-40UT

Location of Jet Stream: Currently over Scotland

Conditions: Mild (12C), fresh south-westerly breeze, some occasional clear spells.

Observations: Seeing very good (II), all four systems cleanly resolved at 260x and 354x.

 

Overall Results & Conclusions:

This study was conducted over the course of one month, from mid-August to mid-September 2018, a period covering 31 days.

The number of days where observations could be conducted was 21, or ~68% of the available nights.

No link was found between the presence of the Jet Stream and the inability to resolve four double star systems with angular separations ranging from ~2.5-1.5″. Indeed, many good nights of seeing were reported whilst the Jet Stream was over my observing location. In contrast, some of the worst conditions of seeing occurred on evenings when the Jet Stream was not situated over my observing site.

There is, however, a very strong correlation between the number of nights available for these observations and the efforts of the observer.

Many of the nights the Jet Stream was located over my observing site were windy, but this was not found to affect seeing. While the wind certainly makes observations more challenging, it is not an indicator of astronomical seeing per se. That said, no east or northeast airflows were experienced during the spell these observations were conducted. At my observing site, such airflows often bring poor seeing.

The archived data (from January 16 2014) on the Jet Sream site linked to above provide many more data points which affirm the above conclusions.

I have no reason to believe that my site is especially favoured to conduct such observations. What occurred here must be generally true at many other locations.

These results are wholly consistent with the available archives from keen observers observing from the UK in the historical past. This author knows of at least two (or possibly three) historically significant visual observers who enjoyed and documented a very high frequency of suitable observing evenings in the UK.

Contemporary observers are best advised to take Jet Stream data with a pinch of salt. It ought not deter a determined individual to carry out astronomical obervations. Perpetuating such myths does the hobby no good.

Post Scriptum:

June 18 2019: Irish imager, Kevin Breen, used his C11 to obtain decent images of Jupiter under a very active Jet Stream. Details here.

July 2 2019: Another testimony of “good seeing” under Jet Stream here

 

Neil English debunks many more observing myths using historical data in his new book, Chronicling the Golden Age of Astronomy.

 

De Fideli.

Book Review: “Improbable Planet” by Hugh Ross.

A Fresh Look at our World.

For He did not subject to angels the world to come, concerning which we are speaking. But one has testified somewhere, saying,

What is man, that You remember him?
Or the son of man, that You are concerned about him?
You have made him for a little while lower than the angels;
You have crowned him with glory and honor,
And have appointed him over the works of Your hands;
You have put all things in subjection under his feet.”

For in subjecting all things to him, He left nothing that is not subject to him. But now we do not yet see all things subjected to him.

                                                                                                       Hebrews 2: 5-8

 

Title: Improbable Planet: How Earth Became Humanity’s Home (2016)

Author: Hugh Ross

Publisher: Baker Books

ISBN: 9780801016899

Price: £12.99 (paperback) pp 283

I love my long summer vacations after another year of intense teaching, from mid-May to late August. I get to do lots of things around the house.

Recently I decided that it was high time to re-organize some of the books in my library. So I went ahead and removed all the titles by Carl Sagan, Charles Darwin, Richard Dawkins, Stephen J. Gould, Richard Fortey, Frank Drake, Seth Shostak, Richard Leakey, Jacob Bronowski and a few others, and re-shelved them in my newly enlarged fiction section.

“Heresy!” I hear you shout. Well, after reading this new book, Improbable Planet, by astronomer and Christian apologist, Hugh Ross, I was compelled to do so. Ross is no scientific shrinking violet. Holding a bachelors degree in physics from the University of British Columbia and a Ph.D in astronomy from the University of Toronto, Ross also carried out post-doctoral research on quasars at Caltech before his Christian faith led him to begin a ministry that seeks to show the harmony between science and faith; a worldview informed from the idea that the Creator provided not one, but two revelatory books; Scripture and Nature. In 1987, he founded his organisation, Reasons to Believe(RTB), in southern California, which has grown in size and influence, helping thousands of thoughtful people make the transition from unbelief to belief. Not only does RTB address astronomical topics, his team now includes PhD-trained scientists in molecular biology, chemistry and physics, as well as a number of highly trained philosophers and theologians. Ross has also built up a huge ‘extended family’ of like-minded people, not just from the sciences and medicine, but the wider community in general, which you can find in presentations of their testimonies on the RTB website.

The thesis of Dr. Ross’ book is this: far from being an ordinary planet orbiting an ordinary star in an undistinguished planetary system, lost in an obscure part of a typical galaxy adrift in a vast sea of other like galaxies, the Earth was the location of an extraordinary chain of events that took place over the aeons, where a super-intelligent agency (which he identifies as Jesus Christ), prepared our planet for its eventual seeding by human beings for the purposes of redeeming billions of souls – a sizeable minority of all the humans that have ever walked the face of the Earth. In support of these claims, Ross calls on an enormous body of scientific evidence from the fields of astronomy, cosmology, planetary science, paleontology, geology and biology to make his case.

Of course, for some, the fact that Ross identifies as a Christian is a complete showstopper. That’s unfortunate, as many will dismiss the book simply based on the man’s spiritual beliefs, but that’s a terrible argument from ignorance; no different in essence from any other kind of bigotry. But rest assured, if you enjoy science, once you settle into the work, you’ll soon appreciate how compelling his arguments are.

Ross can best be described as an Old Earth Creationist, by which I mean, he accepts the consensus view in the scientific community that the Earth and the Universe in which we find ourselves in is old. But not all OECs believe in all the same things. He defends hot big bang cosmology as the origin of space-time and all the matter and energy it contains. He believes that stars and planets evolve over time, citing a huge body of evidence in support of his beliefs. What you won’t find in this book however, is support for biological (read Darwinian) evolution. A long-time sceptic of the evolutionary paradigm, his highly trained team has expertly critiqued the ‘wooly’ scientific claims of its adherants. Now that Neo-Darwinian evolution is coming away at the seams, with an army of biologists now abandoning it by the droves, his long-held and deeply entrenched scepticism of this so-called ‘science’ has been fully vindicated.

Sadly, Ross has endured criticisms, not so much from secular scientists, who largerly respect his work, but from other Christians who hold to a Young Earth Creationist(YEC) perspective, that is, the Earth and the Universe around us are only 6,000 years old. And some YECs have acted very aggressively toward his apologetics. This is also unfortunate, since the age of the Earth is not an issue that Christians should divide over. In truth, both groups have much more in common than they have differences. Indeed, it matters not whether the Earth is 6,000 years old or billions of years old; nature alone will never produce something as complex as a living system in either scheme. Fortunately, his gentle demeanour has won over many YECs over the years and gained the admiration of still more.

That said, there will always be diehard YECs….and that’s OK.

…………………………………………………………………………………………………………………………….

An interesting aside:

Dr. Ross presents some very intriguing facts about the demography of the human race over time. Consider this data found on page 229:

Date  (AD)                          # of Non-Christians per Christian

100                                            360

1000                                          220

1500                                            69

1900                                            27

1950                                             22

1980                                             11

1990                                               7

I suppose we could add a data point for today’s world as well; 3.57

……………………………………………………………………………………………………………………………..

A fresh interpretation of the facts:

The opening chapters of the book assesses the big scientific picture; we live on the outskirts of an unusually large and symmetric barred spiral galaxy, our solar system orbiting the Milky Way galaxy about 26,000 light years form the centre. But astronomers have discovered that the location of our solar system lies just inside the edge of the so-called co-rotation axis of the galaxy, where stars orbit at the same speed as the nearby spiral arms. This is highly fortuitous, Ross argues, as it largely prevents the solar system from entering and leaving spiral arms which would likely have severely disrupted any life that would have developed on the planet. But we know that the solar system very likely did not form where it is located today. The evidence suggests that the unsually high metallicity of the Earth and the solar system at large, points to a location of origin much closer to the galactic centre, where the abundance of such metals are much higher than at the co-rotation axis.

Nota bene: Astronomers refer to all elements heavier than hydogen, helium and lithium as ‘metals’. Such metals were forged inside ancient stars and released to the interstellar medium when they die, either as planetary nebulae or in cataclysmic supernovae events. The incidence of the latter was much higher nearer the galactic centre where the densities of stars was considerably higher than it is at our present location. Indeed stellar metallicty peaks about 50 per closer to the galactic centre than it does at our present orbital radius.

A detailed analysis of the solar system’s elemental abundance strongly suggests that it was enriched by a number of different supernovae explosions(including a very rare type) that enriched it with unsually high levels of heavy elements, particualrly long-lived radionuclides such as uranium and thorium but also short lived species like aluminium 26. This is clearly seen in the abundance of aluminium in the Earth’s crust which comes in at about 8.1 per cent as opposed to the 0.01 per cent for the Universe at large. The rapid decay of these relatively huge quantities of radioactive aluminium released a great deal of heat which helped purge our neonatal solar system of much of the volatile material it would have otherwise ended up with. Our Sun is also anamolous in its oscillatory motion above and below the mid-plane of the Milky Way. Stars in the solar neighbourhood oscillate at right angles to the galactic plane with an amplitude of about 400 light years. In contrast, the Sun exhibits an oscillatory amplitude about half of this value, protecting it from being excessively bathed in galactic radiation, which would have also destroyed the ozone layer, resulting with an increased UV irradiance upon the Earth, scuppering future land life.

The Moon-forming event is discussed in detail, where a Mars-sized object(nicknamed Theia) collided with the neonatal Earth sometime between 50 and 100 million years after our world formed by accretion of material from the solar nebula. Ross explains that this has caused quite a bit of ‘philosophic disquiet’ among some of leading researchers in the field:

The cover article for the December 5, 2013, issue of Nature reported Canup’s concern that “current theories on the formation of the Moon owe too much to cosmic coincidences.”

pp 54

In any event, the collision produced a Moon with sufficient mass to stablise the Earth’s rotation tilt axis, protecting our planet from rapid and extreme climatic variations. Over the aeons, our Moon has gradually recessed from the Earth, slowing its rotation rate to a life-sustaining level. The Moon-forming event further removed large quantities of volatiles from the primordial Earth, preventing it from outgassing enormous quantities of water vapour which would have caused our world to end up with a choking global ocean hundreds of kilometres deep, prevening the formation of continents required for efficient re-cycling of nutrients necessary for all life.

Chapter 6 describes the dynamical history of the planets in our solar system, particualrly the formation of the asteroid belt and the ‘grand tack’ migrations of Jupiter from its rapid formation beyond the snow line of the solar system, followed by its migration inward before moving back out from the Sun to its present stable position. Indeed, the Sun’s family of planets and their positioning is unlike any exoplanetary system thus far characterised.

Chapter 7 provides a fascinating overview of the concept of a habitable zone but takes it far beyond what most science writers are willing to consider. Most of us, for example, are familiar with the water habitable zone; that annulus around a star where temperatures allow a planet to maintain liquid water over geological timescales. Ross takes this concept to a whole new level though, describing not one, but a further seven other zones that must be set in place to allow life to flourish on Earth. These include:

  1. The Ultraviolet habitable zone
  2. Photosynthesis habitable zone
  3. Ozone habitable zone
  4. Rotation rate habitable zone
  5. Obliquity habitable zone
  6. Tidal habitable zone
  7. Astrospheric habitable zone

Without revealing too much in the way of details, Ross writes concerning the UV habitable zone:

The fact that the liquid water and UV habitable zones must overlap for the sake of life eliminates most planetary systems as possible candidates for hosting life. This requirement effectively rules out all M dwarf and most K dwarf stars, as well as O-, B- and A- stars. All that remain are F-type stars much younger than the Sun, G-type stars no older than the Sun, and a small fraction of the K dwarf stars. As  described in chapter 5, only stars at a certain distance from the galactic core can be considered candidates for life support. In the Milky Way Galaxy, some 75 per cent of all stars residing at this appropriate-for-life-distance are older than the Sun. Once these and other non-candidate stars are ruled out, only 3 per cent of all stars in our galaxy remain as possible hosts for planets on which primitive life could briefly survive.

pp 85

Chapter 8 is particularly meaty from a scientific perspective, as it is in this chapter that Ross lends his decades-long studies to the thorny issue of how life appeared on Earth. He writes:

More than a decade ago, evidence indicated that the origin of life occurred within an immeasurably brief time span. The late heavy bombardment (LHB) raised the temperature of the entire planetary surface so high as to evaporate all its water and melt all its rocks. Then, according to multiple isotopic studies, just as soon as the surface temperature cooled enough for the possibility of life’s existence, life appeared. This evidence prompted paleontologist Niles Eldredge to comment, “One of the most arresting facts that I have ever learned is that life goes back as far in Earth history as we can possibly trace it…..In the very oldest rocks that stand a chance of showing signs of life, we find those signs.”

pp 97

That the Earth had life as soon as conditions were cool enough to accommodate them  seems inescapable, and Ross quotes numerous studies recently(as in the last decade) conducted on ancient zircon minerals, graphitic carbon, and metamorphosed shale that clearly show that a complex biosphere was already established as early as 3.8 billion years ago. The ‘smoking gun’ to this complex origin of life may, according to Ross, come from the isotopic signature of photosynthetic life as early as 3.7 billion years ago. He writes:

Another research team found that the carbon isotope signature of planktonic oragnisms in metamorphosed shale dating to 3.7 bliion+ year ago. In the same shale they measured a high ratio of uranium to thorium. This finding indicated a sequence whereby organic debris produced by a local reducing environment that precipitated uranium deposited in the shale sediment by oxidized ocean water. The presence of this oxidised water implies that oxygenic photosynthetic life was abundant prior to 3.7 billion years ago. Given that the simplest oxygenic photosynthetic bacteria contain over 2,000 gene products, this finding suggests that highly complex unicellular life already existed sometime before that date.

pp 98-99

How this complex cellular biochemistry originated so early completely eludes an evolutionary mechanism. It is simply incredulous that such complex cellular life could could come into being by a blind(by necessity) Darwinian process in such a short a time window. Indeed, more and more studies are revealing the same pattern: life began complex.

…………………………………………………………………………………………………………………………….

Another curious  aside: What’s the status of prebiotic chemical research?

Even the first chemical steps towards life require an in-ordinate amount of human ingenuity(read intelligent design or foresight). That much was recently admitted by a high-ranking  German prebiotic chemist in a leading scientific journal. Other heavy weights in the field have also waded into this debate, including Professor James Tour (who favourably reviewed an earlier draft of Ross’ book), who has exposed the scale of ignorance exhibited by educators towards this intractable scientific problem. Furthermore a credible source(terrestrial or extraterrestrial)  of homochiral enantiomers of sugars and amino acids needed to build the first cells has not yet been identified. Indeed the origin of life is the oustanding scientific problem of our generation and will likely remain so for many decades, if not centuries to come.

Much of this is not reported in the popular science periodicals, so readers beware!

……………………………………………………………………………………………………………………………..

 

Many people think it reasonable to believe in some vague evolutionary sequence of events simply by noting that the first lifeforms were microbes with multi-cellular organisms following them before the most complex creatures of all appeared; vascular plants and animals. But Ross entertains an entirely novel idea; the reason why life started out with microbes before introducing more complex life has nothing to do with evolution; more specifically he notes that the environment of the early Earth was very hostile to life, with large swings in temperature and pH, very high concentrations of unprocessed vital poisons** and with radiation levels(from the decay of radioactive atoms) five times higher than exist today. The reason why life started with microbes is that they are much hardier than more complex life (eukaryotes and muti-cellular lifeforms). Indeed, Ross points out that these biochemically sophisticated microbial species removed large amounts of vital poisons from the environment turning many of them into ores (many of which are now used by humanity in high technology devices).

………………………………………………………………………………………………………………………………

**

What are vital poisons?

Vital posons are elements that are toxic if ingested at too high concentrations but are needed at specified low concentrations in body tissues to enable life processes to be maintained. Such elements include boron, fluorine, iron, sodium, magnesium, phosphorus, sulphur, chromium, manganese, copper, zinc, iodine, molybdenum, cobalt and nickel etc.

……………………………………………………………………………………………………………………………..

Thus, in this scheme of events, the Creator put these microbes to work as early as possible to terraform (my own terminology) the Earth’s earliest environments, clearing it of solubilised toxins which was necessary before eukaryotic and multicellular life-forms could be introduced!

In chapter 9, Ross provides an excellent overview of how primitive life functioned in maintaining the large-scale geologic health of our planet, particularly in playing a starring role in stimulating long-lived plate tectonic activity:

In 2015, two geophysicists, Eugene Grosch and Robert Hazen, noted that the subsurface fluid-rock microbe interactions could result in more efficient hydration of the early Earth’s  oceanic crust. This hydration would promote bulk melting leading to the production of felsic crust( igneous rocks rich in feldspar and quartz), which, being lighter than basaltic crust, in turn would generate microcontinents. That is, Earth’s first microbes, by faciliating extensive hydrothermal alteration of ocean floors, yielded extensive mineral diversification that soon resulted in the formation of several microcontinents.

pp 111

 

What is more, as life began to gorge on the minerals formed in Earth’s early crust, it accelerated its weathering, which in turn fed the resulting sediments into subduction zones, thereby stimulating still greater tectonic activity. This was vitally important for Earth’s future history, as the decline in long-lived radioisotopes over time might not have generated the required levels of thermal energy needed to keep the crust in a pliable state needed to build the large continents our planet would end up having. In addition, the early introduction of global  oxygenic photosynthesis drew large amounts of carbon dioxide from the atmosphere to compensate for a steadily brightening Sun. What Ross makes clear is that without the early introduction of life on Earth, this planet would most likely be sterile or nearly so, by now.

……………………………………………………………………………………………………………………..

Yet another curious aside:

Our world is richly endowed with minerals. Indeed, compared with Mars and Venus, which have an estimated 500 and 1000 different types of minerals, respectively, Earth is lavished with over 4,600 known mineral varieties, many of which required the active presence of living systems to create them! See Robert Hazen’s 2013 book, The Story of Earth, for further details.

……………………………………………………………………………………………………………………………….

As described in chapter 11, ongoing plate tectonic activity resulted in the formation of virtually all of Earth’s continental land mass by about 2.5 billion years ago, resulting in 29 per cent of our planet’s surface area being covered by dry land above sea level. To most onlookers, a value of 29 per cent seems somewhat arbitrary, but in fact, it may be highly fine-tuned. Greater land surface areas would induce too little precipitation in the interior of those ancient continents, preventing life from gaining a foothold in these places. On the other hand, land areas significantly less than 29 per cent would not be able to re-cycle enough valuable nutrients between the land, the sea and the atmosphere to maintain a healthy biosphere.

Chapter 13 & 14 of Improbable Planet discuss the significance of the many mass extinction events in Earth history with forensic detail. Again, at first glance, this might indicate that the cause of life on Earth has no author, but Ross begs to differ. Indeed, he suggests that the sporadic cycles of extirpation followed by rapid recovery of the biosphere with new forms of life achieved two aims;

1. The remains of these ancient life-forms yielded massive amounts of new biodeposits that would be used by humanity to launch a global civilization( think of how fossil fuels led to the Industrial Revolution, for example).

2. The lifeforms that replaced those that went extinct were more efficient collectively at drawing more greenhouse gases out of the Earth’s atmosphere, thereby compensating for the greater heating effects of an ever-brightening Sun.

…………………………………………………………………………………………………………………………….

A Question for your consideration: If God designed life so that it could evolve from one kind into another, then why does Earth history reveal so many mass extinction events? Why would He bother?

……………………………………………………………………………………………………………………………….

 

Ross calls on the second revelatory book of Scripture to advance his claims. Consider the words of the Psalmist of old:

These all wait for You,
That You may give them their food in due season.
What You give them they gather in;
You open Your hand, they are filled with good.
You hide Your face, they are troubled;
You take away their breath, they die and return to their dust.
You send forth Your Spirit, they are created;
And You renew the face of the earth.

Psalm 104: 27-30

Intriguingly, the fossil record agrees with the creation and extinction events discussed in Psalm 104 but, significantly, does not support a gradualistic scheme long envisaged by evolutionists.  Accordingly Ross takes his trained scientific eye and applies this to the study of the most famous explosive events in the history of life on Earth; the Avalon (574 -543 Million years ago) and Cambrian Explosions (543-533 Million years ago), the latter of which led to the sudden emergence of some 80 per cent of all existing animal body plans without any credible evolutionary antecedents! Perectly formed eyes, brains, nervous systems, skeletal systems etc, appearing as if out of nowhere.

Ross discusses the sense of bewilderment expressed by paleontologists seeking to provide an evolutionary explanation for these quantum leaps in biology, which are outlined in pages 172 to 179, quoting some leading researchers in the field, and in particular the utter failure of molecular clocks to keep pace with all the innovations wrought by these  explosive events in the history of life.

…………………………………………………………………………………………………………………….

Some further reading on the Cambrian Explosion: I would highly recommend readers  consult and study Stephen C. Meyer’s New York Times best-selling book Darwin’s Doubt: The Explosive Origin of Animal Life and the Case for Intelligent Design(2013). Concerning this book, paleontologist Dr. Mark McMenamin(Mt. Holyoke College) said:

It is hard for us paleontologists, steeped as we are in a tradition of Darwinian analysis, to admit that neo-Darwinian explanations for the Cambrian explosion have failed miserably. New data acquired in recent years, instead of solving Darwin’s dilemma, have rather made it worse. Meyer describes the dimensions of the problem with clarity and precision. His book is a game changer for the study of evolution and points us in the right direction as we seek a new theory for the origin of amimals.

……………………………………………………………………………………………………………………………..

In the final few chapters of the book, Ross outlines an extraordinary sequence of events involving continental breakup, mountain formation, ocean current changes, and ice ages that prepared our planet for the arrival of the pinnacle of God’s creation; humans. He notes that mankind’s appearance coincided with a time when solar activity flaring was at its lowest and solar luminosity (the Sudbury study) reached its greatest stability. Putting it all together he writes:

Is it mere coincidence that our one-of-a-kind long cool summer occurs simultaneously with the following unique events: (1) The Sun becomes exceptionally stable in luminosity, with minimal flaring and ultraviolet and X-ray radiation; (2) no nearby supernova eruptions occur: (3) maximization of the diversity and abundance of life on Earth; (4) various habitable zone windows align perfectly; and (5) many other coincidences described in these pages all come together? Not likely. These amazingly arranged features should give us pause to consider the meaning of our human existence.

pp 218-19

The final chapter reveals the spiritual reasons for human existence as outlined in the pages of the Bible. The enormous body of scientific ‘coincidences’ that Ross presents make it very clear that God deliberately and painstakingly prepared the Earth for humans and that our existence is truly a miracle. That said, these conditions cannot persist indefinitely. We are living in a very narrow window of time in which all these factors work optimally. The story Ross weaves makes it very unlikely that other lifeforms will exist elsewhere in the Universe, as many other scientific authorities in the field are now beginning to concede, and certainly nothing like human beings, but he does point out that we are not alone. The God of the Bible created a host of angelic creatures, the majority of which remained loyal to their Maker and have some capacity to interact with humans. It’s up to each and every one of us to accept Christ’s offer of redemption with exigency or suffer the eternal consequences.

I will leave you with the words of Professor James Tour concerning this wonderful book:

“In Improbable Planet, Ross holds the readers’ hand, leading them in a readable yet gently technical format through a compelling layer-upon-layer argument for the distinctiveness of the planet on which we live and of the preparation for inimitable life on Earth. The text is replete witth references from primary scientific articles in some of the most well-respected journals, underscoring the highest academic rigor taken in substantiating the factual claims. Only the shamefully flippant could dismiss this book as being a faith-filled presentation rather than the scholarly work it represents.”

I wholeheartedly agree!

 

Dr. Neil English is the author of a large(650+ pages) historical work, Chronicling the Golden Age of Astronomy, recently published by Springer-Nature.

 

 De Fideli.