The King James Bible in the 21st Century.

Some Bibles in the KJV tradition, from left to right: The Modern English Version(MEV), the Jubilee 2000 Bible, the New King James Version(NKJV) and the original King James Version(KJV).

A Prayer of Moses the man of God.

Lord, You have been our dwelling place in all generations.
Before the mountains were brought forth,
Or ever You had formed the earth and the world,
Even from everlasting to everlasting, You are God.

                                                                                                         Psalm 90:1-2 (NKJV)

 

Despite the march of time and the illusion of ‘social progress’, the King James Version(KJV) of the Bible still enjoys a prestigious reputation among many Bible believing Christians across the English speaking world. But in recent years, a number of new translations have emerged that are also based on the time-honoured KJV. In this blog, I wish to explore some of these translations, including the Modern English Version(MEV), the Jubilee 2000 Bible(from the texts of the Spanish Reformation), the New King James Version(NKJV) and how they compare and contrast with the original KJV.

 

Tune in soon for more details…………

 

De Fideli.

Book Review: “Lucky Planet” by David Waltham.

A refreshing look at a thorny ‘scientific’ question.

Book Title: Lucky Planet

Author: David Waltham

Publisher: ICON Books

ISBN: 978-1-84831-832-8

Year of Publication: 2014

Price: £9.99(UK) Paperback(225 pages)

If you are a regular reader of the popular periodicals such as Sky & Telescope, Astronomy, Astronomy Now, BBC Sky at Night Magazine, Scientific American, etc you’re sure to notice that any articles discussing life on other worlds invariably paint a picture that life is commonplace in the Universe and will be found in many different exoplanetary environments. Very rarely(if ever), will they present articles arguing the opposite; that life in general, and intelligent life in particular, will be rare or even unique to the Earth. The reasons for this bias are many and varied but some of the most important reasons include; (1) the motivations of their authors to promote their own work in astrobiology,(2) to extend methodological naturalism to the Univese as a whole and (3) to dispell the notion that we might in any way be special.

The problem with this approach is that it is not presented in the true spirit of scientific enquiry, which seeks to find truthful answers to big questions.Thus, more often than not, the inability of these periodicals to publish scientific findings that challenge or counter their philosophic positions simply reflects the ingrained prejudice of its editorial.

I encountered this prejudice directly in a recent exchange with the editor of Astronomy Now, a magazine that I have faithfully written for for 25 years. When I wanted to write an article discussing the idea that extraterrestrial life could be rare, citing many up-to-date scientific articles on the subject, the editor turned sour and refused to publish the work. The reason: nothing to do with science, he just didn’t like what I was reporting! A classic case of bigotry methinks. Anyway, we forgive and forget, then move on. So I decided to take my work elsewhere, no sweat. I suspect however, that my story is not unique. Many science writers before me must have experienced something similar and no doubt, it will happen to someone again in the future.

………………………………………………………………………………………………………………………….

A Related Aside: Check out the hostility I received here in a recent forum discussion entitled: How many Earths in our Galaxy?  I wonder if Waltham would experience the same hostility were he to post his ideas on that forum? Diagraceful? I’d say so!

…………………………………………………………………………………………………………………………….

 

That’s why I was very excited about this recent book, Lucky Planet, written by one of the UK’s most respected geophysicists, David Waltham, who heads a large research team in the Department of Geosciences, Royal Holloway, University of London.

Waltham’s thesis is this; the Earth has enjoyed more or less 4 billion year of “good weather,” and that we owe our existence to an extraordinary sequence of “lucky” happenings that have come about to make and maintain a habitable planet.  Furthermore, this unmerited fortune is very unlikely to occur on the vast majority of worlds that inhabit the observable Universe. Being used to a world teeming over with life all around us, we suffer, Waltham argues, from a severe dose of “observational bias”, which leads many to naturally conclude that life must exist everywhere. He gives some very good examples of how observational bias can lead us to wrong conclusions. For example, Waltham notes that most of the stars visible to us in the night sky are actually larger and more luminous than the vast majority of stars that really exist. But with a telescope, this bias is transformed into something much closer to the truth; that the Universe is filled with innumerable red dawrf stars much fainter and less luminous than the Sun. Indeed, as Waltham reminds us, some 95 per cent of all stars that exist are smaller than the Sun! So looks can deceive!

The principle of mediocrity; the idea that our predicament should not be viewed as special is grounded in the Copernican principle, which Waltham discusses in chapter 2. I was especially impressed with his research on the life and works of Giordano Bruno (1548-1600), who is often cited by science popularizers as a “martyr for science,” and erroneously pedelled by science celebrities such as the late Carl Sagan, and more recently, Neil deGrasse Tyson, not to mention a great many introductory astronomy texts. Waltham convincingly argues that this is largely a scientific myth used to push a certain philosophic agenda(anti-Christian) on an unsuspecting public.

Calling on a great deal of new scientific evidence from astronomy, planetary science and paleoclimate studies, Waltham weaves a very sophisticated scientific picture of the key events in Earth’s deep history that have contributed to maintaining a viable biosphere ever since life took a hold on the young Earth near on 4 billion years ago. Some of the facts he presents are indeed profound:

A warming trend as small as 1 degree C every 100 million years would have been enough to make our world uninhabitable by now, and it would not have been surprising had such a trend occurred.

pp 47

Much of the science in the book derives from Waltham’s own work in theoretical modelling of paleoclimates, as well as geology field work, with many amusing anecdotes along the way. When he was a boy, for example, he lived for a time on the west coast of Scotland, where his love of fossils and geology was nurtured. As a teenager, he became a keen amateur astronomer, with a particular love for the Moon, and even built a few reflecting telescopes, but like myself, drifted away from astronomy for a period to pursue his education in physics, only to return to important astronomical topics later in his career. And though he does not acknowledge the work of a Creator as the explanation for this extraordinary serendipity, he remains respectful of those who do hold religious beliefs.

The book continues with excellent, well-informed chapters on Big Bang cosmology, a spectacularly successful scientific model for the origin and evolution of the Universe, the stabilising effects of the Earth’s Moon, the role of James Lovelock’s Gaia theory in attempting to explain the many inter-related factors that maintain a complex biosphere, and how it fares in comparison to his own ‘Goldilocks’ view of Earth, where luck was the pre-eminent factor in our planet’s success. He appeals to the anthropic principle quite a bit in the book and its usefulness in explaining why the Universe as a whole appears fine-tuned for life.

That said, the book does display a few significant shortcomings. In a biological context, he uses the word “evolution” more like a magic wand than a proper scientific tool. Stars, planets and galaxies evolve because we can model their evolution with a fair degree of precision. But the same has not been demonstrated for the most complex things we know about; living systems. All we hear is ‘this evolved into that,’ with no explanation as to how it happened. And details are very important when trying to convey scientific truths. He rates Charles Darwin as a significant scientific figure, whereas I do not. There is little discussion on the details of how life arose except the usual handwaving about some mysterious ocean floor vent,  and a ‘just so’ story of how replicating RNA models were miraculously encapsulated into a fully viable lipid membrane and the like. I got the distinct impression that Waltham did so in a rather tongue in cheek manner, as if he were toying with his readers. Later in the book he alludes to this shortcoming in the context of computer modelling:

It may seem surprising that the Moon could provide the best evidence of the Earth’s life-friendliness when other factors, such as biological evolution, have had a much more direct and significant impact on our planet’s developing environment. There are several reasons why the Moon tells a more convincing story of our good fortune than many other, apparently more promising, facets of our world. For a start, the behaviour of the Earth-Moon system is reasonably well understood one, controlled by the relatively simple equations of celestial mechanics. I say ‘relatively simple,’ because the details are still a bit of a nightmare. Isaac Newton himself complained that thinking about the motions of the Moon made his head ache! Nevertheless, unlike climate evolution or the evolution of animals and plants, the changing behaviour of our satellite through time can be mathematically modelled with reasonable precision.

pp 184

I applaud the intellectual honesty of Waltham in an age where many inflated scientific egos assert that we have nearly everything figured out. Science itself is evolving; it never ceases so long as inquisitive minds keep seeking answers. What may be true today may not be true tomorrow. He writes;

I should in all honesty admit that experts would argue over almost every one of the details in the story I have just given…..

pp 61

I was also surprised by his avoidance of providing an in-depth discussion on the Cambrian Explosion, which occurred about 541 million years ago and which led to 80 per cent of extant animal body plans suddenly appearing within a short span of 10 million years, and with no credible evolutionary antecedents. Indeed, we now know the fossil record as a whole does not support an evolutionary narrative, with vast periods of stasis interspersed with mass extinctions followed by equally rapid appearances of new species and ecosystems. Waltham would have also benefitted from the work of the world-renowned synthetic organic chemist, Professor James Tour, who has recently weighed in to expose the shocking degree to which human intervention is needed to reproduce even the very first steps toward the simplest of lifeforms. Suddenly, Waltham would have to thank his lucky stars many times over again for all the other convenient happenings in Earth history!

How I wish Waltham were as enthusiastic about the details of living systems as he clearly is about rocks!

Having said all that, Waltham does concede that the origin of life will be a very unlikely event anywhere;

I believe that the origin of life, like all the major steps leading to the emergence of intelligence, is a rare occurrence.

pp 208

I think that’s quite an understatement!

In addition, Waltham hopes that future robotic or human explorers will one day uncover evidence that Mars has (or had) microbial life but offers this very sensible qualification:

My hope is that we will soon find microscopic life living beneath the surface of Mars and my expectation is that its biochemistry will show it to be similar to Earth life. This will generate some interesting discussions as we debate whether the evidence that there is only one way to make life or evidence for cross-contamination between the worlds. I expect a consensus to eventually emerge that the similarities are too great to be explained by a separate origin…

pp 208

As you can see from the internet thread I linked to above, I got lampooned for asserting that the question of whether life is commonplace in the Universe is not really scientific in the sense that we should not expect it to be commonplace in the Cosmos. In other words, it is scientifically naive to assume so. Professor Waltham affirms the same general conclusion in stating that the scientific consensus will very likely fall on the side of extreme rarity rather than ubiquity. He writes;

The scientifically conservative position should be that life is rare and intelligence even more so.

pp 186.

He even advises that others should have a similar frame of mind about the Earth:

I certainly believe that the possibility that the Earth is special should be taken seriously by everyone and for all sorts of reasons, but in conclusion, I’d like to finish with the most important justification of all for considering this idea. It’s probably true.

pp 212

Waltham is a very engaging and likeable intellect; a deep thinker, who kicks back hard against the goads.

Clearly, our Dave put lot of thought into this book. But I sense he is searching for something. He is deeply intrigued by the perfect solar eclipses we experience, whether it is merely a highly unlikely coincidence or whether it points to something far greater, and even describes his trip along with a few chums, to Germany to get a good view of the August 1999 apparition. He often gives thanks to the powers that be (let’s call it the goddess Fortuna) for how lucky he feels to have existed at all! He even ends with a surprising comment; and this from a man who cannot, by his own admission, believe in miracles:

I will not finish on a negative note. Earth and countless other inhabited worlds scattered thinly throughout an unimaginably immense multiverse has given rise to a fragile wonder of life. On Earth we have laughed, loved and wondered at the beauty of the world and the Universe around us. We are part of an extraordinary miracle and I, for one, feel very lucky.

pp 214.

So although Waltham’s goddess – Fortuna – allows for life bearing planets but only so rarely that one or two might exist in each galaxy at the most, or galaxy cluster, he also plays mind games with himself. I was particularly intrigued by these comments:

Acceptance that the Earth is a very odd planet, and that this was necessary for the emergence of humans, also has a very obvious impact on the search for extraterrestrial intelligence. Quite bluntly, if there is significant anthropic selection for Earth properties, then we are effectively alone in the Universe. As I discussed earlier, the nearest extraterrestrial civilization could easily lie beyond the edge of the visible Universe and so be uncontactable. This is quite a disappointing conclusion for many. Indeed, one prominent, well-informed critic of the anthropic ideas has admitted that his views may be coloured by having grown up watching the original ‘Star Trek’ series. Maybe my own views have been coloured by slightly more recent films. I’ve thought for a long time that ‘Alien’ was more plausible than ‘Mr. Spock’, so it’s quite possible that my subconscious doesn’t want aliens to exist.

pp 211

I can empathise with the author here, as my own position is that we are alone.

And there’s a good reason for that!

On my sojourn through this extraordinary labrynth we call life, I have lost my faith in Fortuna; for she acts blindly, with no foresight and cannot create; always fumbling in the dark.

Neither does she care.

But, 20 centuries ago, an extraordinary human being walked the dirt roads of the Galilee, bringing Light to the world, a manchild born in a manger, who grew in wisdom and stature, healed the sick and the infirmed, fed the masses with little more than a morsel of food and even commanded the winds to die down. By turning water into choice wine at a wedding, He gladdened the human heart. He raised the dead, walked on water, and after suffering a horrific execution on a Roman cross; rose triumphantly from the dead and appeared to more than 500 believers before ascending on the clouds to Heaven. In the Holy books written concerning Him we read:

He is the image of the invisible God, the firstborn over all creation.  For by Him all things were created that are in heaven and that are on earth, visible and invisible, whether thrones or dominions or principalities or powers. All things were created through Him and for Him. And He is before all things, and in Him all things consist.

Colossians 1:16-17

This Person chose to enter His own creation and cared Himself to death.

His name is Yeshua of Nazareth, and He promised to return to this Earth, which He created, to bring an end to all evil, suffering and death. The same holy books say that every knee shall bow and every tongue confess that He is Lord.

I joyfully await His return, and would encourage Dr. Waltham to research His truth claims. He brings joy and meaning to my life; Yeshua; the eternally Living God, who will not share His glory with another.

So, to end this review, and despite the few reservations I have with it, I would heartily recommend this book to anyone wishing to get an up-to-date and scientifically accurate picture of how we got here. It is a very well written work, full of joy, wonder, humour and optimism; a book that will help you appreciate just how wonderful every human life is!

Errata:

pp 49 the author says the Orion Nebula is a few hundred light years away. It’s actually about 1,350 light years distant.

pp 54 The author says that Banded Iron Formations(BIFs) cannot form in the presence of oxygen.

BIFs are formed when aqueous iron ions combine with oxygen forming insoluble oxides which form precipitates known as BIFs.

 

 

Neil English regularly kicks against the goads, and is author of a new historical work; Chronicling the Golden Age of Astronomy, published by Springer-Nature.

 

De Fideli.

Beginner Telescopes

 

The ShortTube 80: ready to go to work.

In this age we live in, choosing a good beginner telescope can be a daunting task, what with all the models that are flooding the market. In this article, I  would like to discuss the potential of several telescopes that offer good value for money and will allow their owners to grow in the hobby.

 

Tune in soon for details…………………..

 

De Fideli.

A Brief Commentary on the Holy Scriptures; Tree of Life Version(TLV).

Seeing Scripture through Jewish eyes.

A song: a psalm of Asaph.
God, do not keep silent.
Do not hold Your peace, O God.
Do not be still.
For look, Your enemies make an uproar.
Those who hate You lift up their head.
They make a shrewd plot against Your people,
conspiring against Your treasured ones.
“Come,” they say, “let’s wipe them out as a nation!
Let Israel’s name be remembered no more!”
For with one mind they plot together.
Against You do they make a covenant.

                                                                                                                        Psalm 83: 1-5

 

Are you looking for a brand-new Bible experience? Are you searching for a translation of the Bible that restores some of the Hebrew names and terminology found in the original manuscripts? Perhaps you are looking for a Bible that will help you rekindle an interest in the sacred words of Scripture seen from a Messianic Jewish perspective? If so, I have just the recommendation for you; enter the Tree of Life Vesion(TLV).

The brain child of this ambitious project was Daniah Greenberg and her Rabbi husband, Mark Greenberg, who assembled a cadre of Messianic Jewish Bible scholars to create an all-new translation of the Holy Scriptures that gives the reader a solid flavour of the original Hebraic overtones of the Bible, with a decidely Jewish accent. But it was no small feat, given the proliferation of English Bible versions flooding the global market. Daniah had the courage and conviction to raise the funds to pay for soild scholarship within the Jewish cultural tradition, which culminated with the first edition of the TLV Bible in 2011. Daniah Greenberg now serves as President of the Messianic Jewish Family Bible Society. Greenberg is also CEO of the newly established TLV Bible Society.

It pays to remember that all the Biblical writers, with the possible exception of the author of the Book of Job, were Jews. Jesus Christ was Jewish. The earliest Christian meetings took place in synagogues and despite the attendant evils of anti-semitism throughout history, and its giving rise to unbiblical ideas such as replacement theology,  it is undoubtedly the case that unique insights into much of the Biblical narrative has come from the Jewish mindset. Seen in this light, it is not at all surprising that a new Bible translation made by the original people to which the Lord of all Creation first appeared should find a place on the bookshelves of many Christians in the 21st century.

The first thing you will notice about the TLV is the unfamiliar ordering of the books of the Bible, which have been re-presented in the order rendered in the Jewish tradition, which Christians refer to as the Old Testament. In Jewish parlance, these are the books of the Tanakh.

As you can see from the table of contents below, the Tanakh is further divided into three sections; the Torah (Law of Moses or Pentateuch), the Neviim (The Prophets) and the Ketuvim (The Writings).

 

The unique ordering of the books of the Old Testament(Tanakh), as experienced by Orthodox Jews.

The books of the New Testament(Good News) are presented in their traditional order. The reader will note that the Book of James is titled ‘Jacob,’ and Jude is titled ‘Judah, which  represent their transliterated Jewish names.

The New testament books are presented in their traditional order, with two transliterated names, Jacob(James) and Judah(Jude).

A sizeable number of words are presented in the original Hebrew. For example, YHWH God’s covenant name, is often referred to as Adonai,  but also as Elohim (Creator). Jesus is denoted as Yeshua, Mary(the mother of Jesus) is given her original name, Miriam; Spirit is presented as Ruach, the Levitical priests, Kohanim, the children of Israel, B’nei-Israel and Sabbath is translated as Shabbat. All Hebrew terminology can be referenced at the back of the Bible in the form of a tidy glossary. There is even a section which helps the reader pronounce these Hebrew words correctly. That said, once you get into the TLV, most of the terms sink in very easily and naturally and so provide the reader with an education in basic Hebrew religious terminology. The addition of original Hebrew words also adds to the poetic beauty of the language of the Scriptures, which are readily appreciated while reading through.

Each book of the Holy Scriptures is accompanied by a short introduction written by Messianic Jewish scholars, which provides a concise overview of the most important ideas developed in the texts. The translators intentionally chose to produce a translation that is at once respectful to more traditional translations of the Bible such as the Authorized King James Version (KJV), and more modern translations such as the English Standard Version (ESV) and New American Standard Bible (NASB), retaining some classic Biblical terminology such as “Behold“, “lovingkindness” and “Chaldeans.” For example, in the opening verses of the Book of Esther, the TLV refers to the Babylonian King as Ahasuerus and not Xerxes ,as you will find in looser translations such as the NIV and NLT.

This is what happened in the days of Ahasuerus, the Ahasuerus who reigned over 127 provinces from India to Ethiopia.

Esther 1:1

In keeping with the original customs of the first Christians, the word ‘baptism‘ does not appear in the TLV, being replaced by the more appropriate term, ‘immersion.’ This is entirely justified as infant baptism was not practiced by the earliest followers of Yeshua. Consider this passage from Acts 2;

Peter said to them, “Repent, and let each of you be immersed in the name of Messiah Yeshua for the removal of your sins, and you will receive the gift of the Ruach ha-Kodesh.

Acts 2:38

John the Baptist is likewise referred to as “John the Immerser”

Unlike virtually all other Bibles in the English language, the Adversary’s name is presented in lower case, ‘the satan‘; a most appropriate demotion to honour the ‘father of lies.’ Consider, for example, the opening passages of the Book of Job:

One day the sons of God came to present themselves before Adonai, and the satan also came with them.  Adonai said to the satan, “Where have you come from?”

The satan responded to Adonai and said, “From roaming the earth and from walking on it.

Adonai said to the satan, “Did you notice my servant Job? There is no one like him on the earth—a blameless and upright man, who fears God and spurns evil.”

Job: 1:6-8

Another interesting aspect of the TLV is that it quite often departs from the usual preterite, or imperfect tense one normally experiences in traditional translations. Consider this passage from the Gospel of Matthew Chapter 4 in the NASB:

Again, the devil took Him to a very high mountain and *showed Him all the kingdoms of the world and their glory;

Matthew 4:8

Now consider the same passage in the TLV:

Again, the devil takes Him to a very high mountain and shows Him all the kingdoms of the world and their glory.

Matthew 4:8

These occasional departures add to the immediacy of the situation as if it were happening right now! This is a powerful linguistic tool that the TLV scholars used to evince the poignancy of certain passages of Holy Scripture.

The poetic books of the Holy Scriptures, such as the Psalms, are most beautifully rendered and retain traditional  terms like Selah (an uncertain word thought to refer to an interlude in a musical performance). Consider, for example, Psalm 24 in the TLV:

A psalm of David.
The earth is Adonai’s and all that fills it—
the world, and those dwelling on it.
For He founded it upon the seas,
and established it upon the rivers.
Who may go up on the mountain of Adonai?
Who may stand in His holy place?
One with clean hands and a pure heart,
who has not lifted his soul in vain,
nor sworn deceitfully.
He will receive a blessing from Adonai,
righteousness from God his salvation.
Such is the generation seeking Him,
seeking Your face, even Jacob! Selah
Lift up your heads, O gates,
and be lifted up, you everlasting doors:
that the King of glory may come in.
“Who is this King of glory?”
Adonai strong and mighty,
Adonai mighty in battle!
Lift up your heads, O gates,
and lift them up, you everlasting doors:
that the King of glory may come in.
“Who is this King of glory?”
Adonai-Tzva’ot—He is the King of glory! Selah

Psalm 24

 

The reader of the TLV Holy Scriptures will note that the word “church” does not appear in this translation. Instead, the scholars chose to use the words “Messiah’s community.” This is an acceptable change, as the word they were probably translating was the Greek term ecclesia, which appears in the New Testament 115 times and was often associated with a civil body or council summoned for a particular purpose. The nearest the Greek language gets to “church” is kuriakos, which is best understood as “pertaining to the Lord,” which probably morphed into the Germanic “Kirche” or “Kirk,” which is still used in northern England and Scotland to this day.

An amusing aside: Has anyone ever referred to Kirk Douglas as ‘Church Douglas’, who just happens to be an orthodox Jew?

These translative nuances matter little in the scheme of things however. Acts 11 provides a good illustration of these translation choices:

Then Barnabas left for Tarsus to look for Saul, and when he had found him, he brought him to Antioch. For a whole year they met together with Messiah’s community and taught a large number. Now it was in Antioch that the disciples were first called “Christianoi.”

Acts 11:25-26

Note also that the TLV translation team used the Greek term for Christians, ‘Christianoi‘. This is also perfectly acceptable, as there was no Hebrew word for ‘Christian’ in those early days.

The scholars who created the TLV chose to use the latest manuscript evidence, which included much older texts found in the modern era compared with the King James or New King James, for example(which are based on the Textus Receptus). It thus follows a similar translation ethos to other popular Bibles in the English language such as the NIV and ESV.  On the spectrum of modern English Bible translations, which vary from the highly literal, so-called ‘word for word’ renderings, through the less literal ‘thought to thought’ translations, I would categorise the TLV as adopting a ‘middle of the road’ approach. Perhaps the best way to illustrate this is to look at the same passage of Scripture in a few translations. Consider, for example, the highly literal NASB rendition of Matthew 9, verses 1 through 8:

Getting into a boat, Jesus crossed over the sea and came to His own city. And they brought to Him a paralytic lying on a bed. Seeing their faith, Jesus said to the paralytic, “Take courage, son; your sins are forgiven.” And some of the scribes said to themselves, “This fellow blasphemes.” And Jesus knowing their thoughts said, “Why are you thinking evil in your hearts? Which is easier, to say, ‘Your sins are forgiven,’ or to say, ‘Get up, and walk’? But so that you may know that the Son of Man has authority on earth to forgive sins”—then He said to the paralytic, “Get up, pick up your bed and go home.” And he got up and went home. But when the crowds saw this, they were awestruck, and glorified God, who had given such authority to men.

Matthew 9:1-8(NASB)

 

Next consider the TLV equivalent:

After getting into a boat, Yeshua crossed over and came to His own town. Just then, some people brought to Him a paralyzed man lying on a cot. And seeing their faith, Yeshua said to the paralyzed man, “Take courage, son! Your sins are forgiven.” Then some of the Torah scholars said among themselves, “This fellow blasphemes!” And knowing their thoughts, Yeshua said, “Why are you entertaining evil in your hearts? For which is easier, to say, ‘Your sins are forgiven,’ or to say, ‘Get up and walk’? But so you may know that the Son of Man has authority on earth to pardon sins…” Then He tells the paralyzed man, “Get up, take your cot and go home.” And he got up and went home. When the crowd saw it, they were afraid and glorified God, who had given such authority to men.

Matthew 9:1-8(TLV)

 

Finally, consider the same passage from a thought for thought translation like the NIV:

Jesus stepped into a boat, crossed over and came to his own town. Some men brought to him a paralyzed man, lying on a mat. When Jesus saw their faith, he said to the man, “Take heart, son; your sins are forgiven.” At this, some of the teachers of the law said to themselves, “This fellow is blaspheming!” Knowing their thoughts, Jesus said, “Why do you entertain evil thoughts in your hearts? Which is easier: to say, ‘Your sins are forgiven,’ or to say, ‘Get up and walk’?  But I want you to know that the Son of Man has authority on earth to forgive sins.” So he said to the paralyzed man, “Get up, take your mat and go home.” Then the man got up and went home.  When the crowd saw this, they were filled with awe; and they praised God, who had given such authority to man.

Matthew 9:1-8(NIV)

I think it is reasonable to conclude that the TLV is a good compromise between both translation philosophies, distinguishing itself by means of introducing some Hebrew words and names but also in the way that the translators have chosen to alter the tense of some passages, as discussed previosuly.

The TLV  also follows many of the newer Bible versions in adopting a more gender neutral approach to terms such as ‘Brethern’ or ‘Brothers’. For example, the TLV renders Galatians 1:11 thus:

Now I want you to know, brothers and sisters, that the Good News proclaimed by me is not man-made.

Galatians 1:11 (TLV)

Compare this to the more conservative ESV:

For I would have you know, brothers, that the gospel that was preached by me is not man’s gospel.

Galatians 1:11 (ESV)

And the NIV:

I want you to know, brothers and sisters, that the gospel I preached is not of human origin.

Galatians 1:11(NIV)

Some commentators have expressed concern that the Bible should never be altered so as to express political correctness, as in this case, where ‘brothers’ is altered for the sake of inclusiveness to read, ‘brothers and sisters.’ I understand their concerns but I have no strong opinion either way on this issue, so long as the context of the particular verse is not altered.

The TLV does have a couple of errors which I picked up while reading through the translation. The first appears in Jeremiah 34:14

At the end of seven years you are to set free every man his brother that is a Hebrew who has been sold to you and has served you six years; you are [to] let him go free from you.’ But your fathers did not obey Me, nor inclined their ear.

I have inserted the missing word in bold brackets that makes the sentence comprehensible.

In addition there is a printing error in my Large Print Personal Size TLV on page 902 and 903, the heading of which reads “Obadiah 9” and “Obadiah 1,” respectively. Since these headings are meant to illustrate the chapter numbers, they are clearly unecessary as the Book of Obadiah only has a single chapter.

The typographical error niggled me at first (as an avid reader, I’m very tolerant of typos in general but view Holy Scripture in a more exalted light), but I understand that these things happen. I have written to the TLV Bible Society informing them of these issues which I hope they will be able to resolve in due course.

Some comments on the physical presentation of the TLV Holy Scriptures

The author’s TLV large print copy of the Holy Scriptures.

I was very impressed with the quality of the giant print personal size TLV that I acquired back in January 2018. It has a beautiful leathertex cover, which is soft and durable. Indeed, the current selection of faux leather Bibles(in many translations)are amazing value for money, and are superior to the cheap, bonded leather found on premium Bibles just a decade ago. The TLV also has a smyth-sewn binding for greater durability even with prolonged use.

The Personal Size Giant Print TLV is about 9 inches long and 2 inches thick.

It has a paste-down liner, a highly readable 12.5 font size, beautiful gold gilded pages and comes with a single ribbon marker. I especially like the paper used by Baker Books(the publisher of the TLV), which is a more creamy white than the usual white pages seen n many other of my Bibles.As seen below, the text is presented in a double column format and has a generous number of cross-references. The text is line matched and shows minimal ghosting, which annoys some people more than others.

The paper in the TLV is an off white(creamy), the text is double columned, shows little bleed-through, with clear 12.5 sized font.

The back of the TLV has an extensive concordance, a short glossary explaining the Hebrew terms used in the translation, as well as a short section of prayers (including the Aaronic benediction and the Lord’s Prayer) and other  blessings for those who wish to learn a little more Hebrew. A couple of maps show Yeshua’s travels in the 1st century AD as well as a modern map of Israel. Best of all, you can acquire all of this for a very modest price: I paid about £25 for my copy but you can also get it at discounted prices from smaller retailers. See here for just one example.

I would highly recommend the TLV to avid readers of the Bible. It will come in especially handy when witnessing to Jews but can be enjoyed by anyone who appreciates the deep Hebrew roots of the Christian faith.

 

Dr Neil English shows how the Christain faith has inspired visual astronomers over the centuries in his new historical work; Chronicling the Golden Age of Astronomy.

 

Post Scriptum: You can also read the TLV(or indeed any other Bible translation) online by visiting BibleGateway.com

 

De Fideli.

The Lockyer Sequence

New year’s Day 2019: Plotina starting well on a trail first blazed by Sir Norman Lockyer(1836-1920).

On the evening of January 1 2019, I set up my 130mm f/5 Newtonian astride its Vixen Porta II mount. Conditions were cold, still, and frosty, with temperatures between 0 C and -2C. Seeing was judged to be very good (Antoniadi II).

My purpose this evening was to examine a half dozen double and multiple stars in Orion, as suggested by the distinguished Romanian observer, Mircea Pteancu, who kindly alerted me to a reference made by Norman Lockyer et al in their book, Stargazing: past and present (1878). On page 164 of that book, the authors describe a sequence of double and muliple stars in Orion, which present systems of varying degrees of difficulty for the curious telescopist. After careful collimation and adequate acclimation, the 5.1″ reflector was turned toward the Celestial Hunter, beginning at about 22:00UT and the following systems examined at magnifications ranging from 118x to 566x. The results are shown below:

The Lockyer Sequence.

 

Notes:

The times and magnifications employed are displayed beside the drawings, which depict their orientation in the Newtonian reflector. For all sketches, south is up and west is to the left.

Teasing the close companion to Zeta Orionis apart from its brilliant primary did prove quite tricky, but with a concentrated gaze during the stiller moments, it did yield to the 130mm telescope. The reader will also note the much fainter(10th magnitude) shown at the lower right of the sketch.

The most challenging proved to be 52 Orionis(1″ separation), but with its decent altitude at 22: 43UT, I was able to resolve this classic Dawes pair ( twin 6th magnitude components)  using very high powers. Intriguingly, I first attempted this system by coupling a Meade 3x Barlow lens to a 4.8mm T1 Nagler yielding 405 diameters but without much success. The image was quite dim and very difficult to see the components distinctly. As an experiment, I switched to a Meade Series 5000 5.5mm ultra-wide angle ocular, coupling it to the same 3x Barlow but I also screwed in a 1.6x Astroengineering 1.6x amplifier yielding a power of 566x. To my great surprise, I found the image of the system to be significantly brighter than with the old Nagler and it was much easier to prize the components apart. I can only suggest that the better (read more modern) coatings on the Meade 5.5mm ultra-wide angle allowed greater light throughput, despite the higher powers employed.

566x represents a power of 111x per inch of aperture.

The 130mm f/5 Newtonian continues to surprise and delight me. It’s small, high-quality optics, thermally stable (cork-lined) closed-tube design, and ease of attaining perfect collimation all contribute to its efficacy as a medium-aperture double star instrument.

I would encourage others who have similar equipment to give these beautiful systems a visit. What better way to entertain and challenge a dedicated observer on a cold winter’s evening!

 

 

De Fideli.

A Tale of Three Binoculars

My 30-year old 7 x 50 binocular.

 

It was just over 30 years ago when I was gifted a nice 7 x 50 binocular by my girlfriend. They featured a 7 degree field, multi-coated optics and BaK-4 porro prisms. They served me well all these years on holidays, walks and for casual stargazing. They weren’t cheap either. Lesser units would have fallen apart by now, but after trying a few modern binoculars out I knew that technology had moved on, mostly for the better.

And so had my eyes.

Now that I’m older, I wanted a binocular that had an exit pupil more suited to my age. I wanted an instrument that was more light weight, so that I could observe for longer without using tripods. I wanted a binocular that would do well in a variety of situations, from nature watching from dawn to dusk, and for astronomy. They had to be robust and ideally weatherproof to a degree. My ideal binocular views had to serve up sharp, colour pure views of autumn’s radiant hues but also allow me to throw caution to the wind and just enjoy the glories of the night sky from the comfort of a recliner. But which ones to buy?

Alas, I found that choosing a model that ticked all the boxes for me to be a daunting prospect! Today, we have so many makes to choose from; which is a good thing. My experience with telescopes came in very handy though. Not easily swayed by marketing gimmicks and wishy-washy hyperbole, I slowly pared them down to size.

I decided I wanted a fairly compact, full-size binocular that would offer good light grasp, so a clear aperture of 42mm would be about the minimum that would do the trick. I wanted a fully multi-coated instrument to maximise light transmission to the eye and reduce glare on bright objects to an acceptable minimum. They had to be well made with a decent warranty should they get damaged or worn out from regular use. And they had to present good value for my hard-earned cash.

I narrowed my search down to a good roof-prism binocular as these had many of the features I was looking for; small, light weight, decent light grasp, ultraportable etc. Two magnifications were considered, 8x or 10x. With 10x you’d get a smaller exit pupil and lose some advantages of using them in low light conditions. 10x would also introduce more shake and would be more difficult to accurately focus while in use too, so I decided on 8x; an 8 x 42 binocular.

I went to amazon.co.uk to check out the user reviews of a variety of models I had an interest in. In many ways, these types of reviews give the prospective buyer a more rounded view of what it’s like to use a given model, as they are often more honest and less biased than those offered by so-called ‘experts,’ who, more often than not, succumb to clever marketing ploys and had a tendency to push premium products over more economical models that might still offer perfectly acceptable performance. I found that birders, for example, often highlighted a variety of mechanical and optical features that were largerly superfluous to my needs. I didn’t really need super-fast focusing, locked in dioptre settings, nor ED elements in the objectives. At such low powers, one would be hard pressed to see the advantages of employing low dispersion glass and most of the online literature seemed to over-emphasise their advantages even though I knew that it would only make a small (insignificant?) difference to the views. Afterall, how many amateur astronomers insist on having ED finder ‘scopes eh? Why haven’t 8 x 50 ED finders or some such become the industry standard, if they really offered any tangible advantage over good ole crown & flint? The honest answer is that they’re unnecessary, and so can be dispensed with.

As a case in point, check out this user review of the Vortex 10 x 42 Diamondback roof prism binocular. The gentleman states that he was asked to try out the more expensive Viper model with ED objective elements in a blind test. He states that he couldn’t really tell the difference in field use. I have no reason to doubt the gentleman’s conviction. Why lie on such a trivial matter?

No, a good, no-frills, traditional achromatic binocular to match my average eyes was what I was shopping for!

I went with a company that had a long track record of producing high quality optics, as I reasoned that such knowledge would be invaluable in the construction of a well-made binocular. Many companies selling such binoculars were not long in the game though, so my instinct was to avoid them. I gravitated toward an old British firm that had produced optics for the military in two world wars; Barr & Stroud.

Now bought out by OVL, Barr & Stroud  re-entered the sports optics market by bringing out a range of affordable roof prism binoculars in an 8 x 42 format and my first purchase was the Sahara 8 x 42, which retails for about £70-£90 UK.

The Barr & Stroud Sahara 8 x 42.

 

Though under no illusions that these are British made, Barr & Stroud binoculars are now assembled in China, just like those marketed by Vortex (a US-based company) and many other companies. They are supplied with a nice, soft carry case, neck straps, a lens cleaning cloth and have a 10-year warranty.

The Sahara 8 x 42 binocular comes in attractive box with a good carrying case with the usual accessories.

 

The specifications of the Sahara 8 x 42 model can be viewed here.

The Sahara is a joy to use. It’s small and light weight (670g), has good eye relief (17.5 mm) and with its twist up eyecups, will allow those who must wear eye glasses (I don’t) to enjoy the expansive field of view (7.33 angular degrees). Images are bright and sharp and colour fidelity is sound. With its fully multi-coated optics, contrast and glare suppression are excellent too in comparison to my old 7 x 50s. You really have to look for chromatic aberration but it is there. You can best see it by focusing on the edge of a telephone pole against a bright, overcast sky background, but is minimal and not in the least bit intrusive(I’d say mostly bum-fluff). At the edge of the field, the image gets a little softer with some slight fringing during daylight hours but it will never be enough to disturb the vast majority of users. Focusing is smooth and intuitive, not overly stiff or loose and it has an excellent close focus distance of just under 2m (measured) to allow you to enjoy insects, flowers etc at close range. It also has adequate waterproofing for my intended uses for it.

Night time views were very impressive too. Stars are sharp and pinpoint across the majority of the field. Only by using a stable tripod, will you be able to notice a little defocus of the stellar images at the edge of the field. All in, I would rate the Sahara as very good and considering its modest cost; a great bargain in today’s market! These guys certainly know how to make a good binocular!

Shortly after purchasing the Saharas, I began researching the properties of roof prisms and discovered that they have a significant design flaw. In the roof prism design, the two halves of the collected light from the objectives travel through the prism independently and are recombined before reaching the eyepieces. Because the path of the two wave trains are of slightly different lengths, one half of the light takes a little longer to travel through the prism than the other. When the two halves of the image are recombined, the wave with the longer light path will be slightly out of phase with the light that undergoes the shorter route. This results in a combination of destructive and constructive interference of the wave trains, affecting the colour balance, contrast and fidelity of the binocular image.

Note that this flaw does not affect porro-prism-based binoculars!

By introducing a special phase coating to the prism undergoing the shorter light path, optical designers can slightly retard the wave train, thereby correcting the phase difference with the other wave train. This results in sharper, brighter images with higher contrast; in theory. As I researched this some more, I discovered that the result was quantitatively significant; 8 per cent according to the manufacturers. Intrigued, I looked for a Barr & Stroud model that had this phase coating as the Sahara’s did not have this technology built in and that quickly led me to their 8 x 42 Sierra model.

The Barr & Stroud 8 x 42 Sierra binocular.

 

Luckily, the Sierra was only a little bit more expensive than the Sahara. Full specs here.

Otherwise sharing very similar specifications to the Sahara, the Sierra 8 x 42 is also slightly lighter (650g), coming with the same soft carry case and accessories as the former. The polycarbonate body was also a little different in the Sierra compared with the Sahara, as the above images show. When it arrived, the first thing I did was undergo a test to see if there was any significant difference between the images. Examining a brightly lit scene with a trunk of a tree shadowed by some over-hanging branches and comparing the two binocular images, I must admit that the Sierra was that little bit better. It’s difficult to describe in words but I suppose I’d say that the Sierra image had a little bit more ‘zing’ to it. The image was that little bit brighter and the colours more vivid. Contrast was also better by a shade.

Based on this test, I think phase coating technology is definitely worth having. Subsequent research of other high-end and mid-priced binoculars revealed that they all possessed these phase coatings. I see them as increasing the overall efficiency of light transmission, improving the image in a way that the human eye would notice in a critical test.

In another test comparing my 7 x 50s to the Sierra’s, I had to immediately concede that the images in the latter were far superior to the old porro prism binocular. The image was actually brighter even though it only had 42mm objectives(as opposed to 50mm in the auld yin) and the contrast far superior. The Sierra also presented a larger field of view.

Man and his technology!

Before describing my experiences with the Sierra 8 x 42 in any more detail, I was curious to see how the unit would fare compared with a high-end binocular with roughly the same specifications. As luck would have it, my coalman is a keen birder and dabbles in hunting big game. He’s the proud possessor of a Swarovksi EL 8.5 x 42 binocular, which retails for about £1800 UK. When he came to deliver some coal I got chatting with him and asked him if he would be so kind as to bring them by some afternoon so that we could compare and contrast the images garnered by these binoculars. He agreed.

The Swarovski EL 8.5 x 42 roof prism binocular.

 

Though certainly not a ‘gayponaut’ (a word of my own coining, fomally defined as: an irrational obsession with small ED optics), my coalman, Graham, bought his Swarovski’s about ten years ago, and I was glad to see that they looked as though they’d been used. When I asked him why he chose them he said, “they’re supposed to give brighter views in low light.”  I thought that answer was a little vague though. He didn’t seem to know anything about the fluorite element in the objectives, or the effects of coatings on the optics. He was simply won over by the advertising. I believe this is common among buyers of high-end optics. Afterall, you don’t need to know anything about an internal combustion engine in order to drive a car do you?

Indeed, I knew far more about his Swarovski’s than he did. Nevertheless, we compared the images. I got a shot of Graham’s 8.5 x 42s and he got a chance to test out my 8 x 42 Sierra’s. The results were interesting.

I felt the image quality was excellent in the Swarovski’s. It gave a slightly more neutral colour tone to the Sierra’s in a very slightly larger true field (7.6 angular degrees). Contrast was excellent with really first-rate definition. The built-in field flattening lenses in the eyepieces improved the edge of field correction, and the slight colour fringing I had tried hard to detect in my Sierras was invisible in the Swarovski’s.

Graham liked the Sierras too though. Indeed, he said to me that, ” they’re pretty much the same aren’t they?”

I found it hard not to disagree. I felt the images were much more similar than different.

But what I did appreciate were the mechanical attributes of Graham’s binocular. Its buttery smooth focusing wheel made it easy to adjust focus distance from about 4.5 feet to infinity very swiftly; a bonus for birders I guess. I also appreciated the wonderful diopter adjustment apparatus and hearing the ‘click’ as it was turned to the correct setting.  This clever diopter locking mechanism means that there’s little chance of it slipping out of place during field use. Great, but not something I couldn’t live without.

The Swarovski’s body is a very rugged magnesium alloy chassis which gives a feeling of reassurance while handling the optic, but I didn’t really understand how it would be more resistant to corrosion over the far less expensive polycarbonate body usually found on the majority of sports optics. What Graham and I did notice was the significant weight difference between the models. The Swarovski’s were nearly 200g heavier than the Sierra’s, something that would definitely have a bearing on observing comfort during prolonged field use.

The excellent life-time warranty on the Swarovski’s was something Graham appreciated. He told me that one of the caps on the ocular lens had worn out (they can actually be removed for easy cleaning of the eye lenses) but one of the company reps immediately fitted his unit with a new one; that’s great service!

In the end, I was very grateful to Graham for bringing by his high-end binocular. I was delighted to know that there wasn’t much in it optically. But then again, I kind of expected as much! Did the experience tempt me to save and invest in a Swarovski? I’d have to say no. My Sierra’s were plenty good enough, warts and all!

What to do with the Sahara’s? My sister- and brother-in-law love the great outdoors; camping, glamping, fly fishing, hill walking and sight seeing. The’ve never owned a decent binocular so these will serve as a suitable Christmas gift for them. I just know they’ll love it and use it!

As for the Barr & Stroud Sierra binocular, I will present a separate, in depth review of this instrument in another blog.

Thanks for reading!

 

Neil English is author of several books on amateur astronomy.

 

De Fideli.

Chronicling the Golden Age of Astronomy: A History of Visual Observing from Harriot to Moore.

 

This is an excellent book and will complement Ashbrook’s Astronomical Scrapbook and therefore have wide appeal to both amateur and professional astronomers.

Wayne Orchiston, Professor of Astrophysics, University of Southern Queensland, Australia.

 

Book Content:

Introduction & Acknowledgements

  1. Thomas Harriot, England’s First Telescopist
  2. The Legacy of Galileo
  3. The Chequered Career of Simon Marius
  4. The Era of Long Telescopes
  5. Workers of Speculum
  6. Charles Messier; the Ferret of Comets
  7. Thomas Jefferson and his Telescopic Forays
  8. The Herschel Legacy
  9. Thinking Big: The Pioneers of Parsonstown
  10. The Astronomical Adventures of William Lassell
  11. Friedrich W. Bessel: The Man who Dared to Measure
  12. W.H Smyth: The Admirable Admiral
  13. The Stellar Contributions of Wilhelm von Struve
  14. The Eagle-Eyed Reverend William Rutter Dawes
  15. The Telescopes of the Reverend Thomas William Webb
  16. The Astronomical Adventures of the Artistic Nathaniel Everett Green
  17. Edward Emerson Barnard, the Early Years
  18. William F. Denning; a Biographical Sketch
  19. A Modern Commentary on W.F. Denning’s “Telescopic Work for Starlight Evenings (1891)”
  20. The Astronomical Legacy of Asaph Hall
  21. The Life and Work of Charles Grover(1842-1921)
  22. Angelo Secchi; Father of Modern Astrophysics
  23. John Birmingham, T.H.E.C Espin and the Search for Red Stars
  24. A Historic Clark Receives a New Lease of Life
  25. A Short Commentary on Percival Lowell’s “Mars as the Abode of Life”
  26. The Great Meudon Refractor
  27. A Short Commentary of R.G. Aitken’s “The Binary Stars”
  28. S.W. Burnham; a Life Behind the Eyepiece
  29. Voyage to the Panets: The Astronomical Forays of Arthur Stanley Williams( 1861-1938)
  30. Explorer of the Planets: The Contributions of the Reverend T.E.R. Philips
  31. Highlights from the Life of Leslie C. Peltier
  32. Clyde W. Tombaugh; Discoverer of Pluto
  33. A Short Commentary on Walter Scott Houston’s “Deep Sky Wonders”
  34. A Short Commentary on David H. Levy’s  “The Quest for Comets”
  35. George Alcock and the Historic Ross Refractor
  36. What Happened to Robert Burnham Junior?
  37. The Impact of Mount Wilson’s 60-inch Reflector.
  38. Seeing Saturnian Spots
  39. John Dobson and His Revolution
  40. The Telescopes of Sir Patrick Moore (1923-2012)
  41. A Gift of a Telescope: The Japan 400 Project

Appendix:

Achievements of the Classical Refractor: A Timeline

Index

 

Available now for pre-order!

 

Thankyou for waiting!

 

De Fideli.

De Rerum Natura

Hubble deep Field Image. Credit: Wiki Commons.

 

However, the Most High does not dwell in temples made with hands, as the prophet says:

 ‘Heaven is My throne,
And earth is My footstool.
What house will you build for Me? says the Lord,
Or what is the place of My rest?
Has My hand not made all these things?’

                                                                                         Acts 7:48-50

 

A new paper by a team of Oxford University scientists, submitted to the Royal Society, London:

Dissolving the Fermi Paradox

(Submitted on 6 Jun 2018)

The Fermi paradox is the conflict between an expectation of a high {\em ex ante} probability of intelligent life elsewhere in the universe and the apparently lifeless universe we in fact observe. The expectation that the universe should be teeming with intelligent life is linked to models like the Drake equation, which suggest that even if the probability of intelligent life developing at a given site is small, the sheer multitude of possible sites should nonetheless yield a large number of potentially observable civilizations. We show that this conflict arises from the use of Drake-like equations, which implicitly assume certainty regarding highly uncertain parameters. We examine these parameters, incorporating models of chemical and genetic transitions on paths to the origin of life, and show that extant scientific knowledge corresponds to uncertainties that span multiple orders of magnitude. This makes a stark difference. When the model is recast to represent realistic distributions of uncertainty, we find a substantial {\em ex ante} probability of there being no other intelligent life in our observable universe, and thus that there should be little surprise when we fail to detect any signs of it. This result dissolves the Fermi paradox, and in doing so removes any need to invoke speculative mechanisms by which civilizations would inevitably fail to have observable effects upon the universe.

Full Paper here

 

 

De Fideli.

Collins Stars & Planets (5th Edition): Book Review.

The new edition ( October 2017) of a favourite observing guide.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Collins Stars & Planets (5th Edition, October 2017)

Publisher: William Collins

Authors: Ian Ridpath & Wil Tirion

ISBN: 978 000 823927 5

Book size: 400 pages

Retail Price: £19.99 (UK)

The urge to study the sky transcends national boundaries, and so it should. The skies are open to us all.

pp 2

It’s been ten long years since I last purchased my field guide to the stars: Ian Ridpath & Wil Tirion’s 3rd edition of Stars & Planets. Travelling with me the length and breadth of the country and also on a few overseas trips, this pocket sized guide has proven indispensable for my grab and go excursions under the night sky. Alas, the wear and tear over the last decade is now definitely showing. The binding has now come loose and the pages have become heavily soiled from excessive handling. So, I figured it was high time that I got a new copy of this well received volume, and was delighted to see that it was now in its 5th edition (October 2017).

Stars & Planets is the result of a fruitful collaboration between the British amateur astronomer, Ian Ridpath, and an illustrator, Wil Tirion, living in Holland. In keeping with earlier editions, the first two thirds of the work consists of comprehensive maps of the night sky (both northern and southern hemispheres being readily presented) as they appear from month to month. In addition you will find fairly simple maps of all 88 constellations that grace the night sky, together with a list of interesting objects; some brief mythology, as well as notes on their brightest stars and deep sky objects within reach of a small backyard telescope. The full panoply of celestial objects are represented, including  a suite of pretty double stars, open clusters, emission nebulae, globular clusters, the brighter galaxies and planetary nebulae.  What particularly attracted me to the earlier edition was the relative simplicity of the maps; they were clearly designed to be used in the field where they present the basic outline of each constellation, as seen with the naked eye from a reasonably dark country sky. This enables one to easily ‘star hop’ from one object to the next. Striking a balance between adequate content and clear presentation, it is ideally suited to casual observing, adopting a low tech (my particular favourite) approach.

Each constellation shows the main deep sky objects accessible to an observer with a small, backyard telescope or binoculars.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I was delighted to see that the latest edition retained this same format, only that the maps are now presented with noticeably better contrast against a darker blue sky background. The introduction is filled with basic but very comprehensible facts to help you make sense of how the sky ‘works,’ as well as providing excellent notes on star names (both common and the Greek lettering system), how the planets move in the sky as well as such interesting topics as precession of the equinoxes. The final one third of the book covers information on practical astronomy, including a no frills overview of telescopes and binoculars, observing double and variable stars, comets and meteorites, the Sun, and the planets, including a brief overview of sky transparency and astronomical seeing. Here you will also find a very well laid out section on lunar observing, with plainly presented maps of the particular lunar sections that can observed as it grows from a thin crescent through to full Moon.

Overall, the content is ideally suited to those having small telescopes (60mm to 100mm aperture) and binoculars, with virtually all the objects being well seen with a telescope of just 6 to 8 inches in aperture. The volume is handsomely illustrated throughout, with very high quality images of a wide variety of heavenly bodies; both in the solar system and far beyond. While these are strictly not necessary in a field guide, they certainly improve the overall attractiveness of the book. My only criticism of the work is that the binding is the same as in earlier editions, and so will surely come loose with extensive handling. It would have been better to produce this with a simple ring or sewn binding for greater durability in the field.

For busy grab ‘n’ go observers.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Overall, I highly recommend this book as a conveniently small (for travel) but excellent field guide to the night sky that will be appreciated by either novices or seasoned observers alike. It’s strength lies with its simplicity and will keep a busy amateur happy for many years.

 

 

Neil English’s ambitious new historical work, Chronicling the Golden Age of Astronomy, will be publised later this year.

 

 

De Fideli.

Changing Culture III: Aperture & Resolution.

On the left, a 90mm apochromatic refractor and on the right, a 203mm f/6 reflector enjoying a bout of late evening sunshine.

On the left, a 90mm apochromatic refractor and on the right, a 203mm f/6 Newtonian reflector enjoying a spell of late evening sunshine.

 

 

 

 

 

 

 

 

 

 

Introduction:

One of the ABCs of telescopic optics is that resolving power scales linearly with aperture and light gathering power with the square of aperture. These are fundamental facts that are demonstrably true and have been used productively over two centuries of scientific applications. And yet, all the while, there has been a consistent drive in the last few decades within a section of the amateur community that somewhat erroneously links performance to absolute monetary value. This largely corrupt movement is most ostensibly seen in the refractor market, where amateurs are apparently willing to shell out relatively large sums of money for telescopes that, in terms of performance, are severely limited by their small apertures. This is a worrying trend indeed, and has led many astray within the hobby.

In this capacity, I decided to highlight the anomaly by devising a simple test which exposes this ‘peashooter’ mentality for what it is; a gross misrepresentation of basic optical principles.

Materials & Methods:

Two telescopes were set up in my back garden; a 90mm apochromatic refractor retailing at £1017 (tube assembly only) and a 203mm f/6 Dobsonian, with a retail price of £289, but with some basic modifications (97% reflectivity coatings and a smaller secondary giving a linear obstruction of just 22 per cent) which increased its cost to  approximately half that of the smaller telescope. The Newtonian was carefully collimated before use.

The telescopes were left out in the open air during a dry and bright evening when the temperatures had stabilised and were fully acclimated. Both instruments were kept out of direct sunlight. The refractor had an extendable dew shield to cut down on ambient glare, while the Newtonian was fitted with a flexible dew shield to serve the same purpose. To remove the complicating effects of atmospheric seeing, the telescopes were targeted on the leaves of the topmost boughs of a horse chestnut tree, located about 100 yards away.

Both telescopes were charged with approximately the same magnifications, in this case, a very high power was deliberately chosen; 320x. Next, the images of the leaves were examined visually, being especially careful to achieve the best possible focus, and the results noted.

Results:

The 203mm Newtonian images of the leaves were crisp, bright and full of high contrast detail. In comparison, the image served up by the refractor was much dimmer and a great deal of fine detail seen in the larger instrument was either ill-discerned or completely invisible in the smaller instrument. Though less dramatic, the same results were obtained when a larger refractor (127mm f/12) was compared with the 203mm f/6 Newtonian under similar conditions, with the latter delivering brighter, crisper images with finer detail.

Conclusions:

This simple experiment, requiring nothing more than a few minutes of one’s time and no complicated formulae or optical testing devices, clearly showed the considerable benefits of larger aperture. The images served up by the Newtonian were brighter and easier to see than those served up by the smaller instrument. Resolving power and light gathering power work hand in hand; you need decent light grasp to discern fine details and vice versa.These results were largely independent of the surrounding atmospheric conditions, as the targets were located at close proximity to the telescopes and thus had to travel through a short column of air.

These experiments were repeated with larger instruments; a 127mm f/12 refractor and the same 203mm Newtonian, with the same results, that is, the smaller instrument runs out of light faster than the larger and shows less fine detail in the images served up.

These results confirm that larger aperture is superior to smaller aperture. No amount of claptrap can change the result either. Complications may arise when the same tests are performed on celestial targets, especially during bouts of turbulent atmospheric seeing, when the larger instrument will be commensurately more sensitive. In such instances, it is the environment that introduces anomalies. But when conditions are good, the benefits of larger aperture will be seen, clearly and unambiguously. Absolute monetary value has little or nothing to do with the end result, in direct contradistinction to what is claimed by those who promote small aperture refractors in an unscientific way.

See here for further reading.

 

De Fideli