Spectrum

Take a Closer Look.

 

 

In this blog, I’ll be exploring subjects of general interest/concern to me and wider society:

The Dark Side of Transgender Medicine

 

How the Media Manipulates Truth

 

Cogito ergo sum

 

The Secular Case Against Homosexuality

 

Duelling Worldviews

 

Our Fragile Home

 

The Anti-Social Network

 

A Form of Child Abuse

 

Cool stuff you never hear in Church

 

The Rise of Homeschooling

 

A Debate: Has the Church Replaced Israel?

 

James Clerk Maxwell: a Great Life Lived

 

Reasonable Faith: An Interview with Professor Alvin Plantinga

 

Doubting Dodgy Science

 

Evaluating World Views

 

Depraved Minds

 

The Beauty of the Creation

 

The Preciousness of Free Speech

 

Walking your Way to Good Health

 

Did the Eye Really Evolve?

 

Teilhard de Chardin: Heretic

 

Unholy Alliance: when Dodgy Science Merges with Theology

 

Tour de Force: Why we are Fearfully and Wonderfully Created

 

The Humanist Delusion

 

RTB Classic: The Truth about UFOs

 

The Rise of Neo-Paganism

 

The Brute Logic of Exclusivism

 

From Spiritual Shipwreck to Salvation

 

The Rise in Euthanasia Killings

 

The Greatest Story Ever Told

 

Holocaust Survivor

 

Coming Soon to a Town Near You: The Rise of Bestiality

 

The Death of Naturalism

 

Anything Goes

 

From Gaypo to Paedo

 

When Scientists Lose the Plot

 

The Sixth Mass Extinction Event in Our Midst

 

‘Depth Charging’ the Values of the Ancient World

 

The Record of Nature

 

AI

 

The Language Instinct

 

Not the Same God

 

Greening the Deserts

 

Moving the Herds

 

A Hostile Cosmos

 

Evolutionary Atheist gets his Facts Wrong…..Again

 

Distinguished MIT Nuclear Physicist Refutes Scientism

 

A Tale of Three Binoculars

My 30-year old 7 x 50 binocular.

 

It was just over 30 years ago when I was gifted a nice 7 x 50 binocular by my girlfriend. They featured a 7 degree field, multi-coated optics and BaK-4 porro prisms. They served me well all these years on holidays, walks and for casual stargazing. They weren’t cheap either. Lesser units would have fallen apart by now, but after trying a few modern binoculars out I knew that technology had moved on, mostly for the better.

And so had my eyes.

Now that I’m older, I wanted a binocular that had an exit pupil more suited to my age. I wanted an instrument that was more light weight, so that I could observe for longer without using tripods. I wanted a binocular that would do well in a variety of situations, from nature watching from dawn to dusk, and for astronomy. They had to be robust and ideally weatherproof to a degree. My ideal binocular views had to serve up sharp, colour pure views of autumn’s radiant hues but also allow me to throw caution to the wind and just enjoy the glories of the night sky from the comfort of a recliner. But which ones to buy?

Alas, I found that choosing a model that ticked all the boxes for me to be a daunting prospect! Today, we have so many makes to choose from; which is a good thing. My experience with telescopes came in very handy though. Not easily swayed by marketing gimmicks and wishy-washy hyperbole, I slowly pared them down to size.

I decided I wanted a fairly compact, full-size binocular that would offer good light grasp, so a clear aperture of 42mm would be about the minimum that would do the trick. I wanted a fully multi-coated instrument to maximise light transmission to the eye and reduce glare on bright objects to an acceptable minimum. They had to be well made with a decent warranty should they get damaged or worn out from regular use. And they had to present good value for my hard-earned cash.

I narrowed my search down to a good roof-prism binocular as these had many of the features I was looking for; small, light weight, decent light grasp, ultraportable etc. Two magnifications were considered, 8x or 10x. With 10x you’d get a smaller exit pupil and lose some advantages of using them in low light conditions. 10x would also introduce more shake and would be more difficult to accurately focus while in use too, so I decided on 8x; an 8 x 42 binocular.

I went to amazon.co.uk to check out the user reviews of a variety of models I had an interest in. In many ways, these types of reviews give the prospective buyer a more rounded view of what it’s like to use a given model, as they are often more honest and less biased than those offered by so-called ‘experts,’ who, more often than not, succumb to clever marketing ploys and had a tendency to push premium products over more economical models that might still offer perfectly acceptable performance. I found that birders, for example, often highlighted a variety of mechanical and optical features that were largerly superfluous to my needs. I didn’t really need super-fast focusing, locked in dioptre settings, nor ED elements in the objectives. At such low powers, one would be hard pressed to see the advantages of employing low dispersion glass and most of the online literature seemed to over-emphasise their advantages even though I knew that it would only make a small (insignificant?) difference to the views. Afterall, how many amateur astronomers insist on having ED finder ‘scopes eh? Why haven’t 8 x 50 ED finders or some such become the industry standard, if they really offered any tangible advantage over good ole crown & flint? The honest answer is that they’re unnecessary, and so can be dispensed with.

As a case in point, check out this user review of the Vortex 10 x 42 Diamondback roof prism binocular. The gentleman states that he was asked to try out the more expensive Viper model with ED objective elements in a blind test. He states that he couldn’t really tell the difference in field use. I have no reason to doubt the gentleman’s conviction. Why lie on such a trivial matter?

No, a good, no-frills, traditional achromatic binocular to match my average eyes was what I was shopping for!

I went with a company that had a long track record of producing high quality optics, as I reasoned that such knowledge would be invaluable in the construction of a well-made binocular. Many companies selling such binoculars were not long in the game though, so my instinct was to avoid them. I gravitated toward an old British firm that had produced optics for the military in two world wars; Barr & Stroud.

Now bought out by OVL, Barr & Stroud  re-entered the sports optics market by bringing out a range of affordable roof prism binoculars in an 8 x 42 format and my first purchase was the Sahara 8 x 42, which retails for about £70-£90 UK.

The Barr & Stroud Sahara 8 x 42.

 

Though under no illusions that these are British made, Barr & Stroud binoculars are now assembled in China, just like those marketed by Vortex (a US-based company) and many other companies. They are supplied with a nice, soft carry case, neck straps, a lens cleaning cloth and have a 10-year warranty.

The Sahara 8 x 42 binocular comes in attractive box with a good carrying case with the usual accessories.

 

The specifications of the Sahara 8 x 42 model can be viewed here.

The Sahara is a joy to use. It’s small and light weight (670g), has good eye relief (17.5 mm) and with its twist up eyecups, will allow those who must wear eye glasses (I don’t) to enjoy the expansive field of view (7.33 angular degrees). Images are bright and sharp and colour fidelity is sound. With its fully multi-coated optics, contrast and glare suppression are excellent too in comparison to my old 7 x 50s. You really have to look for chromatic aberration but it is there. You can best see it by focusing on the edge of a telephone pole against a bright, overcast sky background, but is minimal and not in the least bit intrusive(I’d say mostly bum-fluff). At the edge of the field, the image gets a little softer with some slight fringing during daylight hours but it will never be enough to disturb the vast majority of users. Focusing is smooth and intuitive, not overly stiff or loose and it has an excellent close focus distance of just under 2m (measured) to allow you to enjoy insects, flowers etc at close range. It also has adequate waterproofing for my intended uses for it.

Night time views were very impressive too. Stars are sharp and pinpoint across the majority of the field. Only by using a stable tripod, will you be able to notice a little defocus of the stellar images at the edge of the field. All in, I would rate the Sahara as very good and considering its modest cost; a great bargain in today’s market! These guys certainly know how to make a good binocular!

Shortly after purchasing the Saharas, I began researching the properties of roof prisms and discovered that they have a significant design flaw. In the roof prism design, the two halves of the collected light from the objectives travel through the prism independently and are recombined before reaching the eyepieces. Because the path of the two wave trains are of slightly different lengths, one half of the light takes a little longer to travel through the prism than the other. When the two halves of the image are recombined, the wave with the longer light path will be slightly out of phase with the light that undergoes the shorter route. This results in a combination of destructive and constructive interference of the wave trains, affecting the colour balance, contrast and fidelity of the binocular image.

Note that this flaw does not affect porro-prism-based binoculars!

By introducing a special phase coating to the prism undergoing the shorter light path, optical designers can slightly retard the wave train, thereby correcting the phase difference with the other wave train. This results in sharper, brighter images with higher contrast; in theory. As I researched this some more, I discovered that the result was quantitatively significant; 8 per cent according to the manufacturers. Intrigued, I looked for a Barr & Stroud model that had this phase coating as the Sahara’s did not have this technology built in and that quickly led me to their 8 x 42 Sierra model.

The Barr & Stroud 8 x 42 Sierra binocular.

 

Luckily, the Sierra was only a little bit more expensive than the Sahara. Full specs here.

Otherwise sharing very similar specifications to the Sahara, the Sierra 8 x 42 is also slightly lighter (650g), coming with the same soft carry case and accessories as the former. The polycarbonate body was also a little different in the Sierra compared with the Sahara, as the above images show. When it arrived, the first thing I did was undergo a test to see if there was any significant difference between the images. Examining a brightly lit scene with a trunk of a tree shadowed by some over-hanging branches and comparing the two binocular images, I must admit that the Sierra was that little bit better. It’s difficult to describe in words but I suppose I’d say that the Sierra image had a little bit more ‘zing’ to it. The image was that little bit brighter and the colours more vivid. Contrast was also better by a shade.

Based on this test, I think phase coating technology is definitely worth having. Subsequent research of other high-end and mid-priced binoculars revealed that they all possessed these phase coatings. I see them as increasing the overall efficiency of light transmission, improving the image in a way that the human eye would notice in a critical test.

In another test comparing my 7 x 50s to the Sierra’s, I had to immediately concede that the images in the latter were far superior to the old porro prism binocular. The image was actually brighter even though it only had 42mm objectives(as opposed to 50mm in the auld yin) and the contrast far superior. The Sierra also presented a larger field of view.

Man and his technology!

Before describing my experiences with the Sierra 8 x 42 in any more detail, I was curious to see how the unit would fare compared with a high-end binocular with roughly the same specifications. As luck would have it, my coalman is a keen birder and dabbles in hunting big game. He’s the proud possessor of a Swarovksi EL 8.5 x 42 binocular, which retails for about £1800 UK. When he came to deliver some coal I got chatting with him and asked him if he would be so kind as to bring them by some afternoon so that we could compare and contrast the images garnered by these binoculars. He agreed.

The Swarovski EL 8.5 x 42 roof prism binocular.

 

Though certainly not a ‘gayponaut’ (a word of my own coining, fomally defined as: an irrational obsession with small ED optics), my coalman, Graham, bought his Swarovski’s about ten years ago, and I was glad to see that they looked as though they’d been used. When I asked him why he chose them he said, “they’re supposed to give brighter views in low light.”  I thought that answer was a little vague though. He didn’t seem to know anything about the fluorite element in the objectives, or the effects of coatings on the optics. He was simply won over by the advertising. I believe this is common among buyers of high-end optics. Afterall, you don’t need to know anything about an internal combustion engine in order to drive a car do you?

Indeed, I knew far more about his Swarovski’s than he did. Nevertheless, we compared the images. I got a shot of Graham’s 8.5 x 42s and he got a chance to test out my 8 x 42 Sierra’s. The results were interesting.

I felt the image quality was excellent in the Swarovski’s. It gave a slightly more neutral colour tone to the Sierra’s in a very slightly larger true field (7.6 angular degrees). Contrast was excellent with really first-rate definition. The built-in field flattening lenses in the eyepieces improved the edge of field correction, and the slight colour fringing I had tried hard to detect in my Sierras was invisible in the Swarovski’s.

Graham liked the Sierras too though. Indeed, he said to me that, ” they’re pretty much the same aren’t they?”

I found it hard not to disagree. I felt the images were much more similar than different.

But what I did appreciate were the mechanical attributes of Graham’s binocular. Its buttery smooth focusing wheel made it easy to adjust focus distance from about 4.5 feet to infinity very swiftly; a bonus for birders I guess. I also appreciated the wonderful diopter adjustment apparatus and hearing the ‘click’ as it was turned to the correct setting.  This clever diopter locking mechanism means that there’s little chance of it slipping out of place during field use. Great, but not something I couldn’t live without.

The Swarovski’s body is a very rugged magnesium alloy chassis which gives a feeling of reassurance while handling the optic, but I didn’t really understand how it would be more resistant to corrosion over the far less expensive polycarbonate body usually found on the majority of sports optics. What Graham and I did notice was the significant weight difference between the models. The Swarovski’s were nearly 200g heavier than the Sierra’s, something that would definitely have a bearing on observing comfort during prolonged field use.

The excellent life-time warranty on the Swarovski’s was something Graham appreciated. He told me that one of the caps on the ocular lens had worn out (they can actually be removed for easy cleaning of the eye lenses) but one of the company reps immediately fitted his unit with a new one; that’s great service!

In the end, I was very grateful to Graham for bringing by his high-end binocular. I was delighted to know that there wasn’t much in it optically. But then again, I kind of expected as much! Did the experience tempt me to save and invest in a Swarovski? I’d have to say no. My Sierra’s were plenty good enough, warts and all!

What to do with the Sahara’s? My sister- and brother-in-law love the great outdoors; camping, glamping, fly fishing, hill walking and sight seeing. The’ve never owned a decent binocular so these will serve as a suitable Christmas gift for them. I just know they’ll love it and use it!

As for the Barr & Stroud Sierra binocular, I will present a separate, in depth review of this instrument in another blog.

Thanks for reading!

 

Neil English is author of several books on amateur astronomy.

 

De Fideli.

Chronicling the Golden Age of Astronomy: A History of Visual Observing from Harriot to Moore.

 

This is an excellent book and will complement Ashbrook’s Astronomical Scrapbook and therefore have wide appeal to both amateur and professional astronomers.

Wayne Orchiston, Professor of Astrophysics, University of Southern Queensland, Australia.

 

Book Content:

Introduction & Acknowledgements

  1. Thomas Harriot, England’s First Telescopist
  2. The Legacy of Galileo
  3. The Chequered Career of Simon Marius
  4. The Era of Long Telescopes
  5. Workers of Speculum
  6. Charles Messier; the Ferret of Comets
  7. Thomas Jefferson and his Telescopic Forays
  8. The Herschel Legacy
  9. Thinking Big: The Pioneers of Parsonstown
  10. The Astronomical Adventures of William Lassell
  11. Friedrich W. Bessel: The Man who Dared to Measure
  12. W.H Smyth: The Admirable Admiral
  13. The Stellar Contributions of Wilhelm von Struve
  14. The Eagle-Eyed Reverend William Rutter Dawes
  15. The Telescopes of the Reverend Thomas William Webb
  16. The Astronomical Adventures of the Artistic Nathaniel Everett Green
  17. Edward Emerson Barnard, the Early Years
  18. William F. Denning; a Biographical Sketch
  19. A Modern Commentary on W.F. Denning’s “Telescopic Work for Starlight Evenings (1891)”
  20. The Astronomical Legacy of Asaph Hall
  21. The Life and Work of Charles Grover(1842-1921)
  22. Angelo Secchi; Father of Modern Astrophysics
  23. John Birmingham, T.H.E.C Espin and the Search for Red Stars
  24. A Historic Clark Receives a New Lease of Life
  25. A Short Commentary on Percival Lowell’s “Mars as the Abode of Life”
  26. The Great Meudon Refractor
  27. A Short Commentary of R.G. Aitken’s “The Binary Stars”
  28. S.W. Burnham; a Life Behind the Eyepiece
  29. Voyage to the Panets: The Astronomical Forays of Arthur Stanley Williams( 1861-1938)
  30. Explorer of the Planets: The Contributions of the Reverend T.E.R. Philips
  31. Highlights from the Life of Leslie C. Peltier
  32. Clyde W. Tombaugh; Discoverer of Pluto
  33. A Short Commentary on Walter Scott Houston’s “Deep Sky Wonders”
  34. A Short Commentary on David H. Levy’s  “The Quest for Comets”
  35. George Alcock and the Historic Ross Refractor
  36. What Happened to Robert Burnham Junior?
  37. The Impact of Mount Wilson’s 60-inch Reflector.
  38. Seeing Saturnian Spots
  39. John Dobson and His Revolution
  40. The Telescopes of Sir Patrick Moore (1923-2012)
  41. A Gift of a Telescope: The Japan 400 Project

Appendix:

Achievements of the Classical Refractor: A Timeline

Index

 

Available now for pre-order!

 

Thankyou for waiting!

 

De Fideli.

De Rerum Natura

Hubble deep Field Image. Credit: Wiki Commons.

 

However, the Most High does not dwell in temples made with hands, as the prophet says:

 ‘Heaven is My throne,
And earth is My footstool.
What house will you build for Me? says the Lord,
Or what is the place of My rest?
Has My hand not made all these things?’

                                                                                         Acts 7:48-50

 

A new paper by a team of Oxford University scientists, submitted to the Royal Society, London:

Dissolving the Fermi Paradox

(Submitted on 6 Jun 2018)

The Fermi paradox is the conflict between an expectation of a high {\em ex ante} probability of intelligent life elsewhere in the universe and the apparently lifeless universe we in fact observe. The expectation that the universe should be teeming with intelligent life is linked to models like the Drake equation, which suggest that even if the probability of intelligent life developing at a given site is small, the sheer multitude of possible sites should nonetheless yield a large number of potentially observable civilizations. We show that this conflict arises from the use of Drake-like equations, which implicitly assume certainty regarding highly uncertain parameters. We examine these parameters, incorporating models of chemical and genetic transitions on paths to the origin of life, and show that extant scientific knowledge corresponds to uncertainties that span multiple orders of magnitude. This makes a stark difference. When the model is recast to represent realistic distributions of uncertainty, we find a substantial {\em ex ante} probability of there being no other intelligent life in our observable universe, and thus that there should be little surprise when we fail to detect any signs of it. This result dissolves the Fermi paradox, and in doing so removes any need to invoke speculative mechanisms by which civilizations would inevitably fail to have observable effects upon the universe.

Full Paper here

 

 

De Fideli.

Collins Stars & Planets (5th Edition): Book Review.

The new edition ( October 2017) of a favourite observing guide.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Collins Stars & Planets (5th Edition, October 2017)

Publisher: William Collins

Authors: Ian Ridpath & Wil Tirion

ISBN: 978 000 823927 5

Book size: 400 pages

Retail Price: £19.99 (UK)

The urge to study the sky transcends national boundaries, and so it should. The skies are open to us all.

pp 2

It’s been ten long years since I last purchased my field guide to the stars: Ian Ridpath & Wil Tirion’s 3rd edition of Stars & Planets. Travelling with me the length and breadth of the country and also on a few overseas trips, this pocket sized guide has proven indispensable for my grab and go excursions under the night sky. Alas, the wear and tear over the last decade is now definitely showing. The binding has now come loose and the pages have become heavily soiled from excessive handling. So, I figured it was high time that I got a new copy of this well received volume, and was delighted to see that it was now in its 5th edition (October 2017).

Stars & Planets is the result of a fruitful collaboration between the British amateur astronomer, Ian Ridpath, and an illustrator, Wil Tirion, living in Holland. In keeping with earlier editions, the first two thirds of the work consists of comprehensive maps of the night sky (both northern and southern hemispheres being readily presented) as they appear from month to month. In addition you will find fairly simple maps of all 88 constellations that grace the night sky, together with a list of interesting objects; some brief mythology, as well as notes on their brightest stars and deep sky objects within reach of a small backyard telescope. The full panoply of celestial objects are represented, including  a suite of pretty double stars, open clusters, emission nebulae, globular clusters, the brighter galaxies and planetary nebulae.  What particularly attracted me to the earlier edition was the relative simplicity of the maps; they were clearly designed to be used in the field where they present the basic outline of each constellation, as seen with the naked eye from a reasonably dark country sky. This enables one to easily ‘star hop’ from one object to the next. Striking a balance between adequate content and clear presentation, it is ideally suited to casual observing, adopting a low tech (my particular favourite) approach.

Each constellation shows the main deep sky objects accessible to an observer with a small, backyard telescope or binoculars.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I was delighted to see that the latest edition retained this same format, only that the maps are now presented with noticeably better contrast against a darker blue sky background. The introduction is filled with basic but very comprehensible facts to help you make sense of how the sky ‘works,’ as well as providing excellent notes on star names (both common and the Greek lettering system), how the planets move in the sky as well as such interesting topics as precession of the equinoxes. The final one third of the book covers information on practical astronomy, including a no frills overview of telescopes and binoculars, observing double and variable stars, comets and meteorites, the Sun, and the planets, including a brief overview of sky transparency and astronomical seeing. Here you will also find a very well laid out section on lunar observing, with plainly presented maps of the particular lunar sections that can observed as it grows from a thin crescent through to full Moon.

Overall, the content is ideally suited to those having small telescopes (60mm to 100mm aperture) and binoculars, with virtually all the objects being well seen with a telescope of just 6 to 8 inches in aperture. The volume is handsomely illustrated throughout, with very high quality images of a wide variety of heavenly bodies; both in the solar system and far beyond. While these are strictly not necessary in a field guide, they certainly improve the overall attractiveness of the book. My only criticism of the work is that the binding is the same as in earlier editions, and so will surely come loose with extensive handling. It would have been better to produce this with a simple ring or sewn binding for greater durability in the field.

For busy grab ‘n’ go observers.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Overall, I highly recommend this book as a conveniently small (for travel) but excellent field guide to the night sky that will be appreciated by either novices or seasoned observers alike. It’s strength lies with its simplicity and will keep a busy amateur happy for many years.

 

 

Neil English’s ambitious new historical work, Chronicling the Golden Age of Astronomy, will be publised later this year.

 

 

De Fideli.

Changing Culture III: Aperture & Resolution.

On the left, a 90mm apochromatic refractor and on the right, a 203mm f/6 reflector enjoying a bout of late evening sunshine.

On the left, a 90mm apochromatic refractor and on the right, a 203mm f/6 Newtonian reflector enjoying a spell of late evening sunshine.

 

 

 

 

 

 

 

 

 

 

Introduction:

One of the ABCs of telescopic optics is that resolving power scales linearly with aperture and light gathering power with the square of aperture. These are fundamental facts that are demonstrably true and have been used productively over two centuries of scientific applications. And yet, all the while, there has been a consistent drive in the last few decades within a section of the amateur community that somewhat erroneously links performance to absolute monetary value. This largely corrupt movement is most ostensibly seen in the refractor market, where amateurs are apparently willing to shell out relatively large sums of money for telescopes that, in terms of performance, are severely limited by their small apertures. This is a worrying trend indeed, and has led many astray within the hobby.

In this capacity, I decided to highlight the anomaly by devising a simple test which exposes this ‘peashooter’ mentality for what it is; a gross misrepresentation of basic optical principles.

Materials & Methods:

Two telescopes were set up in my back garden; a 90mm apochromatic refractor retailing at £1017 (tube assembly only) and a 203mm f/6 Dobsonian, with a retail price of £289, but with some basic modifications (97% reflectivity coatings and a smaller secondary giving a linear obstruction of just 22 per cent) which increased its cost to  approximately half that of the smaller telescope. The Newtonian was carefully collimated before use.

The telescopes were left out in the open air during a dry and bright evening when the temperatures had stabilised and were fully acclimated. Both instruments were kept out of direct sunlight. The refractor had an extendable dew shield to cut down on ambient glare, while the Newtonian was fitted with a flexible dew shield to serve the same purpose. To remove the complicating effects of atmospheric seeing, the telescopes were targeted on the leaves of the topmost boughs of a horse chestnut tree, located about 100 yards away.

Both telescopes were charged with approximately the same magnifications, in this case, a very high power was deliberately chosen; 320x. Next, the images of the leaves were examined visually, being especially careful to achieve the best possible focus, and the results noted.

Results:

The 203mm Newtonian images of the leaves were crisp, bright and full of high contrast detail. In comparison, the image served up by the refractor was much dimmer and a great deal of fine detail seen in the larger instrument was either ill-discerned or completely invisible in the smaller instrument. Though less dramatic, the same results were obtained when a larger refractor (127mm f/12) was compared with the 203mm f/6 Newtonian under similar conditions, with the latter delivering brighter, crisper images with finer detail.

Conclusions:

This simple experiment, requiring nothing more than a few minutes of one’s time and no complicated formulae or optical testing devices, clearly showed the considerable benefits of larger aperture. The images served up by the Newtonian were brighter and easier to see than those served up by the smaller instrument. Resolving power and light gathering power work hand in hand; you need decent light grasp to discern fine details and vice versa.These results were largely independent of the surrounding atmospheric conditions, as the targets were located at close proximity to the telescopes and thus had to travel through a short column of air.

These experiments were repeated with larger instruments; a 127mm f/12 refractor and the same 203mm Newtonian, with the same results, that is, the smaller instrument runs out of light faster than the larger and shows less fine detail in the images served up.

These results confirm that larger aperture is superior to smaller aperture. No amount of claptrap can change the result either. Complications may arise when the same tests are performed on celestial targets, especially during bouts of turbulent atmospheric seeing, when the larger instrument will be commensurately more sensitive. In such instances, it is the environment that introduces anomalies. But when conditions are good, the benefits of larger aperture will be seen, clearly and unambiguously. Absolute monetary value has little or nothing to do with the end result, in direct contradistinction to what is claimed by those who promote small aperture refractors in an unscientific way.

See here for further reading.

 

De Fideli

Changing Culture.

Octavius: instrument of change.

Octavius: instrument of change.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As  I have commented on in previous communications, an urban myth has been cultivated over the years regarding the unsuitability of Newtonian reflectors in the pursuit of double stars. In the last six months or so, there are encouraging signs that more people are bucking this trend using Newtonian optics of various f ratios and in the examination of pairs of various difficulty, including the sub-arc second realm;

Exhibit A

Exhibit B

Exhibit C

Exhibit D

Exhibit E

These are but a few examples, and I can only hope that the changes will continue so that more people can enjoy this wonderful pass-time.

De Fideli

Origins of Life: A Closer Look Part I

Some life scientists believe they can present a truly naturalistic scheme of events for the origin of life from simple chemical substrates, without any appeal to an intelligent agency.

Here is one such scenario, presented by Harvard professor, Jack Szostak.

I invite you to study the video at your leisure.

In this work, I wish to critically appraise each of the steps Dr. Szostak presents in light of the latest research findings that show that any such scheme of events is physio-chemically untenable from a purely naturalistic perspective.

 

Video Clock Time 00.00 -10.00 min

Here Dr. Szostak sets the scene for this thesis, exploring the varied landscapes and environments under which we find life on Earth. Dr. Szostak reasonably suggests that when life first appeared on Earth, it must have done so in an extreme environment with higher temperatures and in aqueous environments with extreme pH values and high salinity. What Dr. Szostak does not acknowledge is that life was already complex when the Hadean environment first cooled enough to permit life to gain a footing. For example, there is solid isotopic evidence that the complex biochemical process of nitrogen fixation was already in place at least 3.2 Gyr ago and possibly earlier still.

References

Eva E. Stüeken et al., “Isotopic Evidence for Biological Nitrogen Fixation by Molybdenum-Nitrogenase from 3.2 Gyr,” Nature, published online February 16, 2015, http://www.nature.com/nature/journal/vaop/ncurrent/full/nature14180.html.
“Ancient Rocks Show Life Could Have Flourished on Earth 3.2 Billion Years Ago,” ScienceDaily, published online February 16, 2015, http://www.sciencedaily.com/releases/2015/02/150216131121.htm.

In a more recent study conducted by a team of scientists headed by Professor Von Karnkendonk, based at the University of South Wales, solid evidence for complex microbial ecosystems in the form of stromatolite colonies were established some 500 million years earlier at 3.7 Gyr ago.

Reference

M..J Van Krankendonk et al, Rapid Emergence of Life shown by the Discovery of 3,700 Million Year Old Microbial Structures, Nature Vol 537, pp 535 to 537, (2016).

Dr. Szostak claims the origin of life must have occurred via a Darwinian evolutionary mechanism, but the self-evident complexity of the first life forms strongly argues against this assertion, as there would not have been enough time to have done so. In other words, the window of time available for the emergence of the first forms of life on Earth is too narrow to entertain any viable Darwinian mechanism.

Dr Szostak continues by considering the vast real estate available for potential extraterrestrial life forms. Szostak presents the emerging picture; the principle of plenitude – that of a Universe teeming with planets. That is undoubtedly the case; there are likely countless trillions of terrestrial planets in the Universe.  However, new research on the frequency of gamma ray bursts (GRB) in galaxies suggests that such violent events would greatly hamper any hypothetical chemical evolutionary scenario. In December 2014, a paper in Physical Review Letters, a group of scientists estimated that only 10 per cent of galaxies could harbour life and that there would be a 95 per cent chance of a lethal GRB occurring within 4 kiloparsecs of the Galactic centre, and the likelihood would only drop below 50 per cent at 10 kiloparsecs from a typical spiral galaxy. What is more, since the frequency of GRBs increases rapidly as we look back into cosmic time, the same team estimated that all galaxies with redshifts >0.5 would very likely be sterilised. These data greatly reduce the probability that a planet could engage in prebiotic chemistry for long enough to produce anything viable.

Reference
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.113.231102#abstract

In addition to GRB induced sterilization events, Dr Szostak completely ignores the remarkable fine tuning that is required to produce a planetary system that could sustain life for any length of time.

References

http://www.reasons.org/articles/fine-tuning-for-life-on-earth-june-2004

http://www.reasons.org/articles/fine-tuning-the-ratio-of-small-to-large-stars

Dr. Szostak entertains the possibility that lifeforms with fundamentally different chemistry may evolve and that our type of life might be the exception rather than the rule. This reasoning is flawed, as the latest research suggests that carbon-based chemistry in a water-based solvent is overwhelmingly more likely to sustain any biochemical system throughout the Universe. Ammonia has been suggested as an alternative solvent to water but there are some( possibly insurmountable) issues with it.

References
http://www.reasons.org/articles/water-designed-for-life-part-1-of-7

http://www.reasons.org/articles/weird-life-is-ammonia-based-life-possible

Summary: Dr Szostak’s introduction presents a gross oversimplification of the true likelihood of prebiotic chemistry becoming established on Earth and other planets. Szostak does concede that our planet could be unique but is unlikely to be. The emerging scientific data however supports the view that life will be rare or unique to the Earth.

Video Clock Time; 10:00 – 32:00 min
The RNA World
In this section, Dr. Szostak presents the central dogma of molecular biology: DNA begat RNA and RNA begat proteins. Origin of life researchers were completely in the dark about how this scheme of events came into being, but in the mid-1980s, Thomas Cech et al discovered that RNA molecules could act catalytically.
Reference:
Zaug, A. J & Cech, T. The Intervening Sequence of RNA of Tetrahymena is an Enzyme, Science, 231, (1986).

This immediately suggested a way forward; perhaps RNA was the first genetic material and over the aeons, it gradually gave up these activities to its more stable cousin, DNA. Szostak gives some examples of how this ‘fossil RNA’ has been incorporated into structures like ribosomes, the molecular machines that carry out the synthesis of polypeptide chains. His interpretation of these examples as ‘fossils’ is entirely speculative, however.

Szostak then explores hypothetical loci where prebiotic synthesis of biomolecules could have taken place, including the atmosphere, at hydrothermal vents and on mineral surfaces. For the sake of clarity, let’s take a closer look at RNA nucleotides, and in particular, the pentose sugar, ribose. Dr. Szostak mentions the Urey-Miller experiments where supposed prebiotic molecules were produced when an electric discharge was passed through a reducing atmosphere including water vapour. Though widely cited in college textbooks, its validity has in fact, long been discounted by serious researchers in the field. Urey and Miller assumed the atmosphere to be reducing in nature, but it is now known that it was neutral, consisting of nitrogen, carbon dioxide, carbon monoxide and water vapour.

Reference:
The Early Setting of Prebiotic Evolution, Shang,.S
From Early Life on Earth, Nobel Symposium No. 84, Bengtson, S. (ed.), pp 10-23, Columbia University Press (1994).

unnamed

Even in the complete absence of molecular oxygen, this atmosphere could not have sustained the production of prebiotic molecules, including ribose. Only in the presence of significant quantities of molecular hydrogen has some synthesis been demonstrated.

Reference:
Schlesinger, G, & Miller, S. Prebiotic synthesis in Atmospheres containing methane, carbon monoxide and carbon dioxide. Journal of Molecular Evolution, 19, 376-82 (1983).

The problem with this scenario though is that molecular hydrogen would rapidly escape from the Earth’s gravitational field and thus is entirely irrelevant to the question of prebiotic synthesis.

An Aside:

Video Clock Time: 20:00 min: The Narrow Time Window:  Reconciling Dr. Szostak’s timeline for prebiotic chemical evolution with impactor bombardment history.

At 20.00min on his slide, Professor Szostak envisages the time during which prebiotic chemical evolution took place on the primitive Earth. He dates it to a period between 4.2 and 3.8Gyr ago (the supposed time of the beginning of the RNA world). Szostak presents a warm, aqueous environment during which all these reactions were taking place. But the planetary scientists modelling the impact history of the inner solar system have revealed a violent early history for the Earth. Extensive isotope analysis of terrestrial and lunar rocks, as well as cratering rate analysis indicate that the inner solar system was subjected to intense bombardment from the debris left over from the formation of the planets, which occurred between 4.5 and 3.9 Gyr ago. The cratering intensity declined exponentially throughout that era, except for a brief episode of increased bombardment between 4.1 and 3.8 Gyr ago. This is known as the Late Heavy Bombardment. One study has estimated that the total accumulation of extraterrestrial material on Earth’s surface during this epoch added a mean mass of 200 tons per square yard over all the surface of the Earth. Thus, Dr. Szostak’s relatively ‘gentle’ scenario is untenable. Realistically, the only oceans to speak of during this epoch are those of magma.

Reference:

Anbar A.D. et al, Extraterrestrial Iridium, Sediment Accumulation and the Habitability of the Earth’s Surface, Journal of Geophysical Research 106 ( 2001) 3219-36.

http://www.reasons.org/articles/no-primordial-soup-for-earths-early-atmosphere

Back to Ribose (a key component of RNA nucleotides discussed by Dr. Szostak). The only plausible mechanism for the synthesis of ribose is the so-called Butlerow reaction (also referred to as the formose reaction) which involves the coupling of the single carbon molecule, formaldehyde (methanal) in spark-ignited reactions forming sugars of varying carbon numbers, including ribose. However, many side reactions dominate formose chemistry, with the result that the atom economy with respect to ribose is very loww; up to 40 other chemical products being typically produced. This is the case in carefully controlled laboratory synthesis (read intelligently designed!), where the reaction is protected from contamination. Experimentally though, the presence of small amounts of ammonia and simple amines (which should be permissible in Szostak’s scheme) react with methanal to bring the formose reaction to a grinding halt.

Reference:
Chyba, C. & Sagan,C., Endogenous Production, Exogenous delivery and Impact Shock Synthesis of Organic Molecules: An Inventory for the Origins of Life, Nature 355(1992): 125-32.

The concentrations of ribose would have been far too low to sanction any RNA world envisaged by Dr. Szostak. Compounding this is the added problem that ribose and other simple sugars are subject to oxidation under alkaline and acidic conditions, and since Szostak presents both hot and cold scenarios on the primitive Earth, it is noteworthy that ribose has a half life of only 73 minutes at 100C (near hydrothermal vents) and just 44 years at 0C.

Reference:

Oro, J., Early Chemical Changes in Origin of Life, from Early Life on Earth, Nobel Symposium No. 84, Bengtson, S. (ed.), pp 49-50, Columbia University Press (1994).

But there are more serious reasons why Szostak’s scheme of events could ever have happened on the primitive Earth. This is encapsulated in the so-called Oxygen-Ultraviolet Paradox.
Szostak envisages prebiotic synthesis in warm aqueous environments, but on the primordial Earth, some 3-4 Gyr ago, the presence of much higher levels of radioactive nuclides such as uranium, thorium and potassium-40 would have presented another proverbial spanner in the works. These would have been more or less evenly distributed over the primitive Earth and when the radiation they produce passes though water, it causes its breakdown into molecular oxygen, hydrogen peroxide and other reactive oxygen species. Oxygen and the associated reactive oxygen species easily and quickly destroy organic molecules; not just ribose and other sugars but the other biomolecules mentioned by Dr. Szostak too, including fatty acids and purine & pyrimidine bases, required for the production of micelles and nucleotides, respectively .

The other part of the paradox pertains to the produce of stratospheric ozone, which requires ultraviolet light. The ozone layer was not present during the epoch in which Szostak’s scheme of events would have occurred. The intense UV irradiance on the primitive Earth would have sundered any exposed prebiotics, further compounding the problem.

References:

Draganic, I.G., Oxygen and Oxidizing Free Radicals in the Hydrosphere of the Earth, Book of Abstracts, ISSOL , 34 (1999) .

Draganic, I, Negron-Mendoza & Vujosevis, S.I, Reduction Chemistry of Water in Chemical Evolution Exploration, Book of Abstracts ISSOL, 139 (2002).

Dr. Szostak appears to be completely unaware of Draganic’s work (though citing Hazen and Deamer’s hydrothermal synthesis work @ 31 minutes) and indeed, in and of itself, would preclude any further discussions of his scheme of events. But we shall nonetheless persevere with this analysis.

 

This work will be continued in a new post (Part II) here.

Taking Back Visual Astronomy- Filters (An Update on Colour Blindness)

Are serious visual observers becoming colour blind?

Are serious visual observers becoming colour blind?

This work is dedicated to Rutilus

Do not let yourself be tainted with a barren skepticism.

Louis Pasteur (1822-95)

Filters work.

Sunglasses show up details in a bright, washed out image that are nearly invisible in its unfiltered counterpart. Narrow band nebula filters allow you to more easily see faint deep sky objects despite removing vast amounts of other information from the image. Atmospheric haze turns a good achromatic image into a great one. And colour filters, judiciously selected and attached to the eyepiece of a telescope, help you to see planetary details more clearly.

Filters are useful.

But  as I write these words, a new generation of amateur astronomer is running roughshod over tried and trusted traditions of visual observing. The condition is particularly perspicuous amongst those who delight in owning high-end apochromats and premium Newtonian mirrors. In love with aesthetic images, these uber emotive souls are shocked and horrified by the suggestion that adding a filter to the eyepiece might actually enable them to see more than their pretty unfiltered images render. Here are a couple of statements I’ve heard from two supposedly serious planetary observers

“I tried out various colour filters with my 12″ Zambuto mirror, but in the end, figured I was seeing everything without the filters than with them.”

Or,

” My TEC 160 image is so good, I wouldn’t dare cheapen it by placing a $5 filter between it and my eye.”

Or, how about this quote oft parroted on tinternet:

“Filters are unnecessary as it has more to do with the observer’s eye being ill-adapted to photopic mode observation.”

Well, try saying that to a bloke wearing polaroids on a bright summer day.

You see, these three statements amount to complete and utter nonsense!

Take a quick look at these three full moon images.

Unfiltered

Unfiltered

Green filter

Green filter

Red Filter

Red Filter

 

 

 

 

 

Are you going to sit there and tell me filters don’t do anything?

Simply put, filters can improve what we see by removing what we don’t want to see from the view. We can all understand that most contemporary observers desire the most aesthetically pleasing image possible from a ‘scope. Adding a colour filter won’t do anything to enhnace that world view but what it will most definitely do is exaggerate differences in brightness between the various features of a planetary or lunar image.

Colour filters have many uses, including;

1. Glare reduction, which almost invariably leads to an increase in perceived image quality.

2. Overcoming to a greater or lesser degree, the image distorting effects of the atmosphere

3. Enabling observers to study different levels of a planetary atmosphere.

4. Increasing contrast between areas of different colour.

5. While not eliminating optical defects, improving image definition even with bad or mediocre optics.

If you are in the slightest way sceptical about any of the claims above then you’ll be helping to topple the photographic industry. The most commonly used Wratten system, for example, was developed by Kodak in 1909 and has been the standard ever since. The Wratten number, usually found around the circumference of the colour filter gives precise information about the properties of that filter.

Colour Filter                   Wratten #                  Light Transmission (%)

Light Yellow                      8                                         83

Yellow-Green                   11                                       78

Yellow                               12                                       74

Deep Yellow                    15                                        67

Orange                             21                                        46

Light Red                         23A                                      25

Red                                   25A                                      14

Dark Blue                         38A                                      17

Violet                                 47                                         3

Light Green                       56                                        53

Green                                58                                        24

Blue                                   80A                                     30

Light Blue                          82A                                     73

As you can see from the table above, filters vary considerably in their ability to transmit visible light. But, get a load of this, they do it without sacrificing resolution (and may in fact increase it). A very important point I should think. In general, filters work better with larger instruments which have more light gathering power. That said, one of the most versatile filters – the light yellow Wratten # 8 – can be used productively with even the smallest apertures.

Most of the attributes of filters highlighted above are well known, with the possible exception of attribute 2. Meteorologists have known for quite some time about the scattering effects of particles in the atmosphere. Known as Rayleigh Scattering, it predicts that for a given sized particle, light is scattered in inverse proportion to the fourth power of wavelength. Thus, it can be shown that violet light (wavelength ~400nm) is scattered some 16 times more effectively than deep red light (800nm). That’s why the sky is blue and sunsets are red.

And, so the theory goes, employing a red filter during turbulent atmospheric episodes might mitigate to some degree the deleterious effects of bad seeing. Although I have not explored this as vigorously as I’d have liked to, I once tried to see Sirius B using a light red Wratten # 23A with my 4″ Televue 102 refractor some years back, and if memory serves me well, the results were encouraging. Weather permitting, I shall attempt resolving the Sirian Pup – always very low even at culmination from my northerly latitude – using a similar strategy early in the new year.

A violet (47A) filter is very useful for observing cloud features on Venus and although its light transmission is painfully low, it can be pressed into service with larger aperture ‘scopes.

Mars is a great planet to learn how good colour filters can be in extracting atmospheric and surface features. A simple light yellow (#8) reduces glare and increases contrast in smaller apertures (5-inches and less). An orange (#21) is great for pentrating haze and cloud in the Martian disk,as well as increasing contrast between the light and darker areas of the planet. A light green # 56 filter darkens both red and blue features, enabling the observer to prize the morphology of the polar cap more easily.

Jupiter and Saturn also benefit from coloured filtration. Blue and green ones are just dandy for bringing out the belts of the planets. A yellow filter can help reveal bluish features( festoons), while a red filter can help bring out the white ovals so cherished by planetary observers. The icy Saturnian ring system too can look majestic using a red filter.

I’d be willing to bet good money that a patient observer, sketching planetary details in red, green and blue light will see more than one observing a ‘luminance’  image. Every dedicated planetary observer should have a set. And while dyed glass filters are perfectly adequate ( and cheap as chips), one might gain some additional benefit from the newer interference colour filters manufactured by companies like Baader Planetarium., Germany.

The study of colour filters on the lunar surface is an unexplored frontier, as far as I’m aware, but think geologically (minerals and that)!

                                          Improving resolving power with colour filters

The resolving power of a telescope (in radians) is approximated by Lamda/D, where lamda is the wavelength and D is telescope aperture. The Dawes limit is closely matched to a wavelength of 562nm. Converting radians to angular degrees, we can easily compute that for a 4-inch instrument (0.1m), the Dawes limit is ~1.15 arc seconds. Yet, as I have shown elsewhere in my work, there are quite a few instances where this value has been exceeded. An overly sceptical person might doubt the veracity of these claims, but if the eye has a peak sensitivity at a lower wavelength, resolution can be improved.

Individuals who have a form of colour blindness called protanopia perceive red hues as essentially dark and have peak spectral sensitivities shifted to shorter wavelengths (typically 520nm) – quite similar to where a normal, trichromatic eye would shift when fully dark adapted (~507nm). Thus, even if these individuals were observing in photopic or mesopic mode, they would have no sensitivity to longer, red wavelengths but with no loss of acuity. A simple calculation shows that such an individual might derive a ‘new,’ lower Dawes limit of 1.0 arc second with the same 10cm ‘scope. What happens as the protanopic eye dark adapts – does the peak sensitivity fall further back as in the trichromatic eye? If that happens, even greater resolution feats are conceivable!

And what of deuteranopia (another fairly common form of dichromatism where the retina lacks green cones)? Under typical night time viewing conditions, wouldn’t their red light sensitivity decrease, inducing them to rely on their blue-sensitive (peak spectral response ~440nm) cones. Could these individuals resolve finer details still?

All this serves to illustrate is that we still know far too little about the human eye (in all its enormous variety) to devise over-restrictive rules that only serve to tell folk what they can and can’t acheive. I for one don’t want to be told what I can and cannot see. Away with the Universal, away with the ‘thought police’!

While all of this sounds like pie in the sky, it can be handidly demonstrated with colour filters. A violet filter working at 390nm will improve the resolution of a telescope by up to 30 percent. A blue filter; less so. Noted CCD imager Damian Peach, produced a cool illustration of this effect on his website. You will note that the binary system is unresolved at red wavelengths, elongated at green wavelengths, and cleanly resolved at blue (lower) wavelengths. See here. Neat huh?

Note addded in proof: While researching the life of the 19th century observer, G.V. Schiaparelli, I came across a curious account of colour blindness in William Sheehan and Steve O’ Meara’s book, Mars; The Lure of the Red Planet(pp 117):

That color blind individuals possess superior vision, at least for certain  types of observations, is attested  by at least one other case known to me. According to Donald Osterbrook, Lick Observatory, astronomer Nick Mayall was colour blind., ” and he believed that it made his eyes more sensitive to faint light so he could find and observe fainter stars, nebulae and galaxies than other astronomers  with normal eyesight. Certainly, when I visited him at the Crossley reflector one night around 1955, he was taking a spectrum of an object  that was too faint  for me to see, though he evidently could see it well and the spectrum  was a good one when he developed it the next day. Several other astronomers have told me that color blind observers can see fainter objects at night than those with normal eyes -WS.

Indeed, knowedge of this sort has helped resolve a few issues I have had with my own telescopes. I only recently discovered that my eyes are particularly red sensitive and I appear to have less sensitivity at shorter (bluer) wavelengths. While using my 5″ Russian achromatic refractor, I can see the faint companion to Eta Geminorum better using a fringe killer than without it ( it blocks off  deep red wavelengths very effectively, as you’ll see below). I find that while I can achieve 1 arc second splits quite easily, 0.9 arc second pairs remain beyond my abilities, possibly because I see too much of the red end of the diffraction pattern. By using a blue filter, I hope to finally smash that 1.0 arc second barrier, if anything, to prove to myself that it is my eyes that are found wanting and not my telescope.

Nosce te ipsum.

                                                            Polarizing Filters

The light that reaches us from the depths of space vibrates in every conceivable plane. Plane polarised light, on the other hand, vibrates in only one plane, greatly reducing scattered light in the eye (irradiance) and increasing contrast. You only need look at the effects of a polarising filter from a medium focal length lens to see how dramatic an improvement to a daylight landscape it can make.

Single polarising filters have been used successfully by double star observers , especially in cases where one component is significantly brighter than the other. The theory is that the glare from the brighter primary is reduced enough to render visible a faint secondary.

Many observers have employed polarising filters to observe deep sky objects during full Moon nights. There is apparently a big contrast gain when the telescope is pointed about 60 degrees away from Luna and amazing results when swung away to 90 degrees. Larger apertures and low powers naturally benefit from this more than smaller instruments.

Neutral density filters are often cross polarising in effect, where two polarisng layers are mounted in such a fashion that one can be rotated relative to the other, empowering the observer with ability to vary the brighness of an object. Moonwatching with a large Dobsonian  can be cool with one of these.

                                                         Minus Violet Filters

Minus Violet or anti-fringing filters have been round for over a decade now. By and large they have a tried and trusted reputation for improving the performance of achromatic refractors. They achieve this through selectively blocking (via destructive interference) selected wavelengths at both the violet (short wavelength end) and deep red (longer wavelength) end of the visible spectrum. Typically it is at these extreme ends of the spectrum that most of the unfocused light(secondary spectrum) arises in achromatic refractors. Because they block specific wavebands of visble light, they usually impart a yellowish tint to the image, which seems to bother some more than others. In addition to blocking off unwanted secondary spectrum they greatly help with focusing the instrument, particularly during turbulent bouts.

The most aggressive minus violet filters have a tendency to dim the image a little too much, especially if you’re in the habit of using smaller instruments, but there is one filter that I have studied at length that is particularly useful; the Baader Fringe Killer. Although more expensive than traditional yellow filters, the fringe killer works more effectively in my opinion. The Baader Contrast Booster is also excellent although it cuts off too much light for productive use in smaller instruments.

I have used the fringe killer quite extensively with my 5″ f/9 achromatic refractor, observing Jupiter at or near opposition as well as in the pursuit of double stars. It deals effectively with the unfocused blue halo round the planet but also greatly increases the contrast between the darker belts and surrounding bright areas of the atmosphere. Focusing the planet is child’s play too. If you’re a student of Jupiter using a moderate aperture achromatic refractor, then this filter is highly recommended.

These filters are also excellent for star testing refracting telescopes. They invariably clean up the spherochromatism that oft attends the intra- or extra-focal images of stars, allowing you to more accurately assess the quality of the optic.

But it’s not only achromatic images that can be improved by this filter, ED scopes seem to respond very well too. This is particularly the case with the new breed of econo-model ED scopes now on the market. One way these manufactuers get round the issue of producing a fairly short focal length ED doublet without introducing spurious blue fringing round bright objects is to over correct at short wavelengths at the expense of more lax correction at deep red wavebands. This reduces blue fringing alright but serves up slightly washed out images of planets like Jupiter. When I examined the image in one of these units, I discovered that it was quite dramatically improved by using the fringe killer. I attribute this to the cleaning up (by blocking off) of the loosely focused deep red colours. It was just easier to see the details in the planet’s belt with the filter in place. The filter transmits enough light that telescopes as small as 80mm can benefit from its effects.

Double stars too benefit from this filter. One of the most effective things the filter does is cut down on glare (irradiance) which can make seeing a faint, close companion more easy to pick off, especially when located right up next to a much more brilliant companion. While evaluating a 6-inch ED instrument, which produces very bright images of systems such as Delta Cygni, I found the fringe killer reduced the glare round the primary quite a bit making the companion easier to keep in view during a vigil.

And on my 5″ f/9 achromatic refractor, I discovered that the fringe killer was a fantastic tool to render tricky systems like the devilish companion to Eta Geminorum (Propus) much easier to see. On most nights I have trouble with this system, whether observing through an apochromat or achromat. Reducing the red glare of the red giant primary with this filter was a real eye-opener to me though.

Some might object that using such a filter reduces the aesthetic appearance of a pair, but that’s not really been my experience at the eyepiece. Famous colour-contrast pairs, such as Albireo and Gamma Andromedae (Almach) are just as beautiful with the filter as without it and the rich colours actually seem more enhanced to my eye compared to the unfiltered view. Only whiter pairs seem to give way to a yellowish cast.

If you’ve been round the block a few times, no doubt you’ve heard the show-stopping mantra of the apophiles whenever the subject of these filters comes up.

“It won’t turn your $300 achromat into a $3,000 apochromat.”

What does that mean exactly?

If they allow you to use optimal magnifications on the moon and planets with your modest achromat isn’t that enough?

These filters will often improve the images of both telescopic genres by teaching your visual system to concentrate on the most important wavebands – where the vast majority of the information from an image is imparted – over yellow green wavelengths.

Filters are tools; pure and simple. Find the time to use them skillfully.

References and Further Reading

Some additional background on filters here

http://alpo-astronomy.org/mars/articles/FILTERS1.HTM

http://www.cloudynights.com/ubbthreads/showflat.php/Cat/0/Number/5502389/Main/5502322

Bakich, Michael E, 2003, The Cambridge Encylopedia of Amateur Astronomy, Cambridge University Press.

Want to Explore More? Follow me on FaceTube and Twatter. Eye.